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ABSTRACT 

T h e  paper  s tudies  opera tor  imp lemen ta t ions  of der ivat ions of algebras.  

Let  7r and  0 be  irreducible representa t ions  of an  a lgebra  .4 on Banach  

spaces X and  Y. A linear m a p  5 : . 4  -+ B(Y, X) is a (n, p)-derivation if 

5(ab) = 7r(a)5(b)TS(a)p(b). It is bimodule-closable  if ~(an) -+ 0, p(an) -'~ 
0 and  5(an) -+ B imply B = 0. A closed opera tor  F from Y into X 

implemen t s  6 if Fp(a) - ~(a)F C 5(a), for a E A. It is shown tha t  if 

X , Y  are reflexive and  ei ther  the  closure of the  a lgebra  {Tr(a) + p(a) : 
a E .A} or b o t h  algebras r( .A),p(.A) conta in  compac t  operators ,  t hen  

the  set Imp(6)  of  all imp lemen ta t ions  is not  e m p t y  for any  bimodule-  

closable (Tr, p)-derivat ion 6, and  ei ther conta ins  a min ima l  operator ,  or a 
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maximal operator, or two families of operators R~ C G;~, /k E C, such 
that R;~ C_ T C G~ for each T E Imp(5) and some )~. 

These results are applied to the study of norm-closed operator alge- 
bras B on Banach spaces X with only one invariant subspace L. It is 
proved that, if/3 contains compact operators, X is reflexive and L has 
approximation property, then/~ contains all compact "corner" operators: 
BX C_ L and BL = 0. If L has a closed complement, the same is true if 
the closure of the block-diagonal part of/~ contains compact operators. 
If X is non-reflexive, B may have no "corner" operators. If, however, /3 
consists of compact operators then its weak closure contains all "corner" 
operators. A description is given of algebras of compact operators on 
Hilbert spaces with only one invariant subspace. 

I n t r o d u c t i o n  

Let X and  Y be Banach  spaces.  We denote  by B ( X )  the  a lgebra  of all  bounded  

opera to r s  on X and by B(Y,  X )  the  space of all  bounded  opera to r s  from Y into 

X .  Let  ~r and  p be represen ta t ions  of an a lgebra  A on X and Y, respectively.  A 

(Tr, p ) - d e r i v a t i o n  is a l inear  m a p  (i from A into B(Y,  X )  sat isfying the rule: 

(i(ab) = 7c(a)(i(b) + (i(a)p(b). 

Clearly,  any (~-, p ) -der iva t ion  is a usual ,  spa t i a l  der iva t ion  from A into the  

A - b i m o d u l e  B(Y,  X) .  A (Tr, p ) -der iva t ion  is called b l m o d u l e - c l o s a b l e  if 

~r(an) ~ 0, p(an) ~ 0 and (i(an) --+ B E B(Y,  X )  imply  t ha t  B = 0. 

Th roughou t  the  p a p e r  the  convergence is in the  norm topology  unless ano ther  

topo logy  is indicated.  

Each ope ra to r  F in B(Y,  X )  defines a b imodule-c losable  (~r, p ) -der iva t ion  (iF 

of A:  

(iF(a) = 7c(a)F - Fp(a) for all  a E A.  

More generally,  a densely defined ope ra to r  F from Y to X i m p l e m e n t s  a (Tr, p)- 

der iva t ion  (i of A if i ts  doma in  D(F)  is p- invar iant  and  if 

(0.1) (i(a)iD(F) = (Fp(a) - 7r(a)F)iD(g) for each a E ,4. 

We denote  by Imp((i) the  set of all closed, densely-defined ope ra to r s  which im- 

p lement  (i. I t  is not  difficult to  see t ha t  any implemen ted  der iva t ion  mus t  be 
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bimodule-closable; we are interested in the conditions under which the converse 

is true. 

The question "which unbounded derivations of an algebra A are implemented 

by densely defined operators" is of a cohomological nature. Its "bounded" version 

- -  "which derivations of .4 are implemented by bounded operators" - -  is the 

problem of the description of the first cohomology group of .4 with coefficients 

in the bimodule B(I~; X).  

Bratteli  and Robinson [BR] studied the case where X = Y is a Hilbert space 

and a is a closable ,-derivation of a , -algebra .4 in B(X) .  They proved that,  if 

the closure of ,4 contains the ideal of all compact operators, then Imp(a) ~ 0. In 

Section 2 we shall extend their result to bimodule-closable (7r, p)-derivations of 

arbitrary algebras provided that  the Banach spaces X, Y are reflexive, 7r, p are 

irreducible, and either the closure of the algebra {7r(a) + p(a) : a E A} or both 

algebras 7r(`4) and p(A) contain non-zero compact operators. 

Earlier in Section 1 we shall consider various properties of 5r-representations 

- -  irreducible, infinite-dimensional representations which contain non-zero finite- 

rank operators in their images. Their theory appears to be surprisingly close to 

the theory of finite-dimensional, irreducible representations. For example, as 

in the classic Schur lemma, the space of all intertwining operators for two 5r- 

representations is either trivial or "one-dimensional". 

Section 3 describes the structure of the set Imp(a) when rr, p are irreducible 

representations whose images contain non-zero compact operators. It  is proved 

that  Imp(a) either contains a minimal operator such that  all T C Imp(a) extend 

it, or it contains a maximal operator which extends every T E Imp(a),  or it 

contains two families of operator {Ra}~ec, {Ga}xec, Ra C_ Ga, such that  any 

T E Imp(a) satisfies Ra C T c Gx for some A c C. 

The most natural  class of (re, p)-derivations consists of derivations of sub- 

algebras `4 of B(X)  into B(X) ,  where re and p are the identity representations. 

Another class is constituted by "corner" derivations of .4: let L be a closed .4- 

invariant subspace of X, M be a closed complement of L in X,  and Q be the 

projection on M along L. Then 7r: A -+ AlL, p: A ~ QAIM, A ~ A, are repre- 

sentations of A and a: A ~ (1 - Q)A]M is a (Tr, p)-derivation of A. This allows 

us to apply the above results about derivations to the study of the structure of 

operator algebras with only one non-trivial invariant subspace. 

Let B be a norm-closed algebra of operators on a Banach space X,  and suppose 

that  B contains a non-zero compact operator. If X is a reflexive space with the 

approximation property and B has a trivial invariant subspace lattice ({0}, X) ,  
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then (see [L] and also [RR])/3 contains all compact operators on X. It  is natural  

to ask what can be said about Y if it only has one non-trivial invariant subspace L. 

In Section 4 we shall establish that,  if X is reflexive and L has the approximation 

property, then B must contain all compact operators T such that  T X  C_ L and 

T L  = 0 - -  compact "corner" operators. If L has a closed complement, the same 

is true under a weaker condition: the closure of the "block-diagonal part" of B 

contains a non-zero compact operator. If, however, X is non-reflexive, then B 

may have no non-trivial operators vanishing on L. 

It  is also proved, without the assumption of reflexivity of X,  that  if B consists 

of compact operators then its weak closure contains all "corner" operators. We 

finish Section 4 by a description of algebras of compact operators on Hilbert 

spaces with only one non-trivial invariant subspace. 

ACKNOWLEDGEMENT: The authors are extremely grateful to the referee for the 

valuable comments and suggestions for improvement. 

1. P r o p e r t i e s  o f  ~ ' - r e p r e s e n t a t i o n s  

We denote by ~ ( X )  the algebra of all finite-rank operators on a Banach space X,  

and by X* the dual space of X. For x E X and g C X*, the rank-one operator 

g ® x  acts on X by 

g ® x(z )  = g ( z ) x  for  z ~ X .  

For each operator A on X,  we denote by D(A)  its domain and by A* the conjugate 

operator on X*. If A is closable, that  is, xn --+ 0 and Axn --+ x imply that  x = 0, 

then we denote by A its closure. If x C D(A)  and g e D(A*), then 

A ( g G x )  = g ® A x  and ( g Q x ) A  = A* g ®x .  

( g ® x ) ( h ® y ) = g ( y ) ( h ® x ) ,  so that  ( g ® x )  2 = g ( x ) ( g ® x ) .  

If g(x) ~ 0 then g ® tx is a rank-one projection for some t E C. 

Let U be a subalgebra of B ( X ) .  T h e n / 4  is transitive if its lattice of closed 

invariant subspaces consists only of {0} and X. For each manifold L in X,  we 

denote by UL the linear span of {Ax  : A E bl, x C L}. Set 

uy = u n 7 ( x ) .  

If L/is transitive and U:- ~ {0}, then U~- is also transitive on X and contains a 

rank-one projection ([B]). We need the following refinement of this result. 

(1.1) 

Hence 

(1.2) 
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LEMMA 1.1: Le t / , /  be a transitive subaIgebra o r B ( X ) .  I f l t j :  # {0}, then the 

ideal J generated by all rank-one projections in U coincides with U~=. 

Proof: We prove the l emma  by induction on the rank r(T) of opera tors  T. If  

r(T) = 0, then  T = 0 E J .  Assume tha t  J contains all opera tors  with rank 

smaller  t han  k, and let T E L/j= with r(T) = k. 

Let x = Ty ~ O. There  is S C L/y with Sx  ~ O. Let R be a rank-one opera to r  

with R S x  = y, and set P = T R S .  Then  P x  = x. Since L/y is t ransi t ive,  it 

is weakly dense in B ( X )  (see Theorem 8.23 in [RR]), so tha t  TLI~=S is weakly 

dense in T B ( X ) S .  Since T B ( X ) S  is finite-dimensional,  T B ( X ) S  = TU~:S C_ Uj=. 

Hence P E b/j=. Since r(P)  = 1 and P x  = x, P is a rank-one project ion,  so tha t  

P C J .  We have T = P T +  (1 - P ) T  and P T  C J. Since r((1 - P)T)  < r(T),  we 

have (1 - P ) T  C J. Hence T E J .  I 

Definition 1.2: An irreducible representa t ion 7r of an a lgebra  .4 on X is called 

an 5r-representat ion if 7r(A) M F ( X )  ¢ {0}. 

For a representa t ion 7r of ,4 on X ,  we set 

(1.3) = {a e A :  c f ( x ) } .  

Then  I~ is an ideal of A and Ker(Tr) C_ I , .  I f  7r is an 5r-representat ion of A, then  

the opera tor  a lgebra H = 7r(A) is transit ive,  Ker(Tr) C I~ and 

u s  = n 5 r ( x )  = ¢ {0}. 

Consider  the subsp~ces 

E~ = zr(I~)X and E~ = 7r(I~)*X*. 

LEMMA 1.3: Let zr be an :-representation of an algebra .4 on X .  Then 

(i) E~ is dense in X and contained in any non-zero zr-invariant subspace of X ,  

(ii) E~ ¢ {0} is contained in any non-zero 7r*-invariant subspace of X*.  

Proof: The subspace E~ is non-zero and 7r-invariant. Hence it is dense in X.  

If  L is a non-zero, 7r-invariant subspace of X ,  it is dense in X.  Hence, for any 

a E ,4, 7r(a)L is dense in zr(a)X. If a E I~,  then d i m z r ( a ) X  < oo, so tha t  

7r(a)X = 7r(a)L C_ L. Hence E~ C_ L. Pa r t  (i) is proved. 

Set 7~ = {r E .4 : 7r(r) is a rank-one operator}.  I t  tollows f rom L e m m a  1.1 

tha t  zr(I~) coincides with the linear manifold generated by all opera tors  7r(r) 
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with r E 7~. Let L be a non-zero 7r*-invariant subspace of X*.  To prove (ii) it 

suffices to show tha t  7r(r)*X* C L for each r E 7~. 

Let  r E 7~ and 7r(r) = g ® x ,  where 0 ¢ x E X and 0 7~ g E X*. Then  

rr(r)* = x ® g  and 7r(r)*X* = Cg. For each a E `4, ar E 7~ and 7r(ar) = 

~r(a)lr(r) = g ® ~r(a)x. Let 0 ~ h E L. Then  7r(ar)*h = (7r(a)x ® g)h = 

h(rr(a))g E L. Since 7r is irreducible, there exists a E ,4 such tha t  h(Tr(a)) ¢ O. 

Hence :r(r)*X* = Cg c_ L. I 

I t  follows from L e m m a  1.3 tha t  

(1.4) E~ = 7r(l~)x = 7r(A)y and E~ = 7r(I~)*f = 7c(A)*g, 

for any 0 ¢ x E X and 0 =fi y E E~,  any 0 ~ f E X* and 0 ¢ g E E*.  

LEMMA 1.4: Let  7r be a representation o f `4 ,  and let J be an ideal o f  M not  

contained in Ker(lr) .  

(i) I f  rr is irreducible, then the representation a = 7rIJ is irreducible. 

(ii) I f  ~r is an 99-representation, then a an JZ-representation and Eo = E~. 

Proof'. The  representat ion a irreducible, since, for each x E X ,  we have 

rr(J)x  D_ ~r(A)Tr(J)Tr(A)x -- 7r(A)Tr(J)X -- X. 

The  representa t ion ~lI~ is irreducible, whence :r(J)~r(I~)X = ~ ( J ) X  = X .  Since 

~(J)~(i~) c_ ~ ( j )  n 99(x), we have ~(J)  n 7 ( X )  ¢ {0}. Hence ~ is an 7 -  

representat ion.  

Since Io = J N I~, we have Eo C E~. On the other  hand E~ is ~--invariant 

and, by L e m m a  1.3(i), E~ C_ Eo.  Thus E~ = Eo.  I 

If  7r is an 99-representation of ,4, then there is p E ,4 such tha t  7r(p) is a rank- 

one projection.  For later  investigations it is impor tan t  to know the conditions 

when, for two 99-representations 7r, p of ,4, there exists an element p in ,4 such 

tha t  bo th  :r(p) and p(p) are rank-one projections.  

We call 99-representations 7r, p c o h e r e n t  if 

(1.5) p(I~) 7~ {0} and 7r(b ) 5~ {0}. 

THEOREM 1.5: Let  ~r and p be F-representat ions  o f ,4  on X and Y ,  respectively. 

There exists  p E A such that  lr(p) and p(p) are rank-one project ions i f  and only 

i f  ~r and p are coherent. 

Proof: Let ~r and p be coherent 99-representations. Wi thou t  loss of generality, we 

suppose tha t  Ker(Tr) MKer(p) = {0}. If  rr, p are not faithful, then, by L e m m a  1.4, 
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7r I Ker(p) ,  Pl Ker(~r) are ~ ' - representat ions.  Thus  there are a E Ker(Tr), b E Ker(p)  

such tha t  7r(b) and r(a) are rank-one projections.  I t  remains  to set p = a + b. 

Assume now tha t  7r is faithful. There  is a E ,4 such tha t  p(a) is a rank-one 

project ion.  Clearly, 7r(a) ~ 0. There  is also b E ,4 such t ha t  p(b) ~ 0 and 7r(b) 

has rank  one. Indeed, 7r(Ker(p)) is an ideal of 7r(A). If  it contains all r ank  one 

project ions in 7r(.A), then, by L e m m a  1.1, it contains 1r(,4)A.T(X) = 7r(I~). Since 

7r is faithful, I~ C_ Ker(p) ,  which contradicts  (1.5). 

Clearly, r(~r(axb)) _< 1 and r(p(axb)) _< 1 for each x E .4. Since p(A) is 

t ransi t ive,  there is x E A with p(axb) ~ O. Since 7r is faithful, 7r(axb) ~ O. Thus  

we have found an element c E A such tha t  7r(c) and p(c) are rank-one operators ,  

say 

7 r ( c ) = g ( ~ e a n d p ( c ) = h @ f ,  w h e r e e E X ,  g E X * , f E Y a n d h E Y * .  

Set ,A 1 = {a E ,A: g(Tr(a)e )  = 0 ) ,  ,A 2 = {a E A :  h(p(a)f) = 0}. Then  Ai are 

proper  subspaces of A, so tha t  A ¢ .41 U A2. Hence there is b E A such tha t  

g(Tr(b)e) ~ 0 and h(p(b)f) y~ O. Taking (1.1) and (1.2) into account,  we have t ha t  

~r(bc) = g Q 7r(b)e and p(bc) = h ® p(b)f are non-ni lpotent  rank-one operators .  

Hence there is 0 ~ t E C such tha t  the element p = tbc satisfies 7r(p) 2 = 7r(p). 

Since 7r is faithful, p2 = p, whence p(p) is also a rank-one project ion.  

The  converse is obvious. I 

Remark 1.6: The following conditions are sufficient for P - represen ta t ions  7r, p 

to be coherent:  

(a) Ker(~r) = Ker(p);  

(b) Ker(Tr) is not  contained in Ker(p)  and Ker(p)  is not contained in Ker(Tr). 

Indeed,  if Ker(Tr) = Ker(p)  and ~r(Ip) = 0, then  p(Ip) = 0, which is impossible 

for an 9V-representation. Sufficiency of (b) was established in Theo rem 1.5, but  

it is easy to prove it directly: if 7~, p are not coherent,  say 7r(Ip) = 0, then 

Ker(p)  C Ker(~r). I 

LEMMA 1.7: Let 7r be an Jr-representation, and suppose that p is irreducible. I f  
Ker(p)  = Ker(Tr), then p is also an Jr-representation. 

Proof: Withou t  loss of generality, we m a y  assume tha t  bo th  7r and p are faithful. 

Let p E A be such t ha t  7r(p) is a rank-one projection.  Then  7r(pAp) is one- 

dimensional.  Since 7r, p are faithful, the same is t rue for pap and p~ = p, so p(p) 
is a project ion.  Since p(A) is t ransi t ive,  p(p)Ax = p(pAp)x is dense in p(p)X 
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for each x E p(p)X. Hence p(p) has rank one, so tha t  p is an S--representation. 

I 

LEMMA 1.8: Let ~r and p be coherent 3r-representations of ,4 on X and Y, 

respectively, and let 6 be a (Tr, p)-derivation of ,4. Then any densely defined 

operator T which implements 6 (see (0.1)) is closable. 

Proof." By Theorem 1.5, there is p E A such tha t  7r(p) = g ® e and p(p) -- h ® f 

are rank-one projections, where e E X,  g E X*, ] E Y and h E Y*. Then  

zc(p)e = g(e)e = e. Since D(T) is p-invariant, p(p)y = h(y)J belongs to D(T) for 

y E D(T).  Since D(T) is dense in Y, f E D(T).  

Let y~ --+ 0 in Y and Tyn --~ x in X.  For each a E .4, we have p(a)yn --+ O. By 

(0.1), 

g(7r(a)x)e = 7r(p)Tr(a)x = lim 7c(pa)Tyn = lim 6(pa)yn -b limTp(pa)yn 

= lim Tp(p)p(a)yn = lim h(p(a)yn)Tf  = O. 

Hence g(1r(a)x) = 0 for all a E A. Since 7r is irreducible, x = 0. I 

2. E x i s t e n c e  o f  i m p l e m e n t a t i o n s  o f  b i m o d u l e - c l o s a b l e  d e r i v a t i o n s  

Let 7r and p be representations of an algebra A on Banach spaces X and Y and 

let l)  =- {zr(a)+p(a) : a E A} be the corresponding operator  algebra on X + Y .  

In  this section we prove the following generalization of the Bra t te l i -Robinson 

theorem (see [BR]). 

THEOREM 2.0: Let 7r and p be irreducible representations of A and let X and Y 

be reflexive Banach spaces. If  the norm closure of the operator algebra 1) contains 

a non-zero, compact operator, then any bimodule-closable (Tr, p)-derivation of A 

is implemented by a closed, densely defined operator. 

We will prove Theorem 2.0 in a few steps. First we require some auxiliary 

results. 

LEMMA 2.1: Let 6 be a (Tr, p)-derivation of A. 

(i) / f  a closable operator F implements 5, then F E Imp(6).  

(ii) If  Imp(6) ¢ 0, then 6 is bimodule-closable. 

Proo~ Let xn E D ( F ) ,  xn --+ x E D(F) and Fxn -+ Fx. For a E A, 

p(a)x  p(a)x and Fp( )xn = 6(a)xn +  (a)F n 6(a)x +  (a)rx. 
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Hence p(a)x E D(F)  and 5(a)x = Fp(a)x  - rc(a)Fx. Thus F E Imp(5) and (i) is 

proved. 

Let R E Imp(5),  7r(an) ~ 0, p(an) ~ 0 and 5(an) --+ B. For y E D(R),  we 

have 

By  = lim 5(an)y = l i m ( R p ( a n ) y -  7r(an)Ry) = lim Rp(an)y. 

Since R is closed, By  = 0. Thus B = 0, so that  (f is bimodule-closable. I 

LEMMA 2.2: Let 5 be a (~, p)-derivation of A, let J be an ideal of A,  and suppose 

that  hnp(51J ) # 0. 

(i) l f  p is irreducible and J is not contained in Ker(p), then Imp((~) # O. 

(ii) I f  7r, p are irreducible and J is not contained in KerOr ) N Ker(p), then 

Imp(5) # O. 

Proof." If T E Imp(51J ), then p(J )D(T)  C D(T) .  By Lemma 1.4, plY is irre- 

ducible, so that  p(J )D(T)  is dense in Y. By (0.1), for each a E A, b E J ,  we 

have 

5(a)p(b)x = 5(ab)x - 7c(a)5(b)x = 7r(ab)Tx - Tp(ab)x - 7r(a)[Tr(b)Tx - Tp(b)x] 

= (Tp(a) - ~r(a)T)p(b)x 

whenever x E D(T) .  Hence T' = T Ip (J )D(T  ) is a densely defined closable 

operator which implements 5. By Lemma 2.1(i), T p E Imp(5). 

Taking (i) into account, we may suppose that  J C_ Ker(p). Then 5(b)y = 

1r(b)Ty for each y E D(T)  and b E J .  The subspace 

G = {x+y E X ~ - Y :  5(b)y = 7c(b)x for b E J}  

is closed in X + Y  and contains the graph {Ty+y  : y E D(T)}  of T. If  x~-0 E G, 

then 7c(b)x = 0 for b E g. Since Ker0r  ) does not contain J ,  it follows from 

Lemma 1.4 that  7r(J) is transitive. Hence x = 0, so that  G is a graph of a closed 

operator S: G = {y+Sy  : y E D(S)} and 5(b)y = 7c(b)Sy for y E D(S)  and 

b E J .  

The subspace D(S)  is p-invariant. Indeed, for a E A, b E J and y E D(S) ,  

5(b)(p(a)y) = (~(ba)y - ~r(b)5(a)y -- ~r(b)(rc(a)y - 5(a)y). 

Therefore 

Since ~r(J) is transitive, (f(a)y = T:(a)Sy -- Sp(a)y. Thus S E Imp(5).  | 
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Clearly, if 6 is a bimodule-closable Or, p)-derivation, then 

(2.1) Ker(zr) N Ker(p) C_ Ker(6). 

The following result represents the first step in the proof  of Theorem 2.0, and also 

shows that ,  for coherent F-representat ions  ~r, p, each (Tr, p)-derivation satisfying 

(2.1) is bimodule-closable. 

THEOREM 2.3: Let  7r, p be coherent ~-representations, and let 6 be a Or, p)- 

deriwation such that  Ker0r  ) N Ker(p) C_ Ker(5). Then Imp(5) 7~ 0. 

Proof." By replacing .4 by A/ (Ker (Tr )N  Ker(p)),  we may suppose tha t  

Ker(Tr)NKer(p) = {0}. By Theorem 1.5, there exists p C .4 such tha t  7r(p) = gQe  

and p(p) = h ®.f are rank-one projections: g(e) = f ( h )  = 1. Since p2 _ p belongs 

to Ker(Ir) N Ker(p),  p is a projection. 

Set C = pap .  The representations ~r(C) and p(C) are one-dimensional. Hence 

dim(C) < 2, since Ker0r  ) N K e r ( p )  = 0. If  d im(C) = 1, t h e n C  = Cp. As in 

the proof  of Theorem 8 in [BR], sett ing T -- 6(p), 6T(a) = Tp(a)  - 7r(a)T and 

A = 6 - 6T, we obtain tha t  A is a Or, p)-derivation and A(p) = 0. Therefore 

a ( c )  = 0. 

Now suppose tha t  d im(C)  = 2. Then  C = Cp + Cq, where ~r(q) = 0 and 

p(p - q) = 0. Setting T = 5(t)) and A '  = 5 - 5T as above, we have a ' ( p )  = 0. 

Now set S = a t (q )  and a = A t - 5s. Since pq = qp = q, we have 

a ' ( q )  --- ar(pq)  = 7r(p)A~(q) and At(q) = at(qp)  = a ' (q)p(p) .  

Therefore, taking into account  the fact tha t  p(q) = p(p), we obtain  

a ( p )  = dr(p)  - ( a ' (q )p (p)  - ~ (p )a ' ( q ) )  = 0, 

A(q) = a~(q) - (at(q)p(q)  - ~r(q)a'(q)) = a ' ( q )  - a ' (q)p(p)  = o. 

Thus  A(C)  = 0. 

The condition tha t  A(pap)  = 0 for a E A gives 7r(p)a(a)p(p) = 0. Making 

use of (1.1) and (1.2), we have g ( a ( a ) f )  = 0. Applying this in the case where 

a = cb, we obtain 

gOr(c)A(b) f )  + g ( a ( c ) p ( b ) f )  = 0 for b, c e A. 

If  p(b) f  = 0, for some b in .4, then gOr(c)a(b) f )  = 0, for all c C .A, and hence 

a ( b ) f  = 0, since lr(~4) is transitive. This allows us to define a linear operator  
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F: F(p(b)f) = A(b)f on the subspace L = p(A)f ,  which is dense in Y. The 
operator F implements A: 

A(a)(p(b)f)  = A(ab)f  -7c(a)A(b)f  = ( F p ( a ) -  rr(a)F)(p(b)f). 

By Lemma 1.8, F is closable, so F E Imp(A), which implies that Imp(6) ¢ O. 

I 

Let 7r, p be jr-representations, 5 be a Or, p)-derivation, and let T E Imp(6). 

Then D(T) is p-invariant and D(T*) is ~r*-invariant. By Lemma 1.3, Ep C_ D(T) 

and E* C_ D(T*). Clearly, TIE o E Imp(6) and, in the case where both X and Y 
are reflexive, 

TIE p C_ T C_ (T*IE*)*. 

LEMMA 2.4: l f  X, Y are reflexive, then (T*IE*)* E Imp(6). 

Proof: Let A E B(X) ,  B E B(Y)  and C E B(Y, X)  be such that  

BD(T)  C_ D(T) and AT + T B  C C. 

A standard argument shows that 

(2.2) A*D(T*) C_ D(T*) and T'A* + B ' T *  C C*. 

Applying this to the inclusion Tp(a) - ~r(a)T C_ 6(a), we obtain 

~r(a)*D(T*) C_ D(T*) and p(a)*T* - T* ~r(a)* C_ 6(a)* for each a E ,4. 

Taking into account the fact that  E* is 7r*-invariant and contained in D(T*), 

denote T*IE* by S. Then p(a )*S -  STr(a)* C_ 6(a)* and, since X, Y are reflexive, 
S*p(a) - 7r(a)S* C_ 5(a). This means that  S* E Imp(6). I 

THEOREM 2.5: Let ~r and p be irreducible representations of.A, and let 5 be a 
bimodule-closable (~r, p)-derivation. 

(i) IfKer(Ir) = Ker(p) and 7r or p is an jr-representation, then Imp(6) ¢ 0. 

(ii) If  Ker(Tr) is not contained in Ker(p) and p is an jr-representation, then 

Imp(6) ~ 0. 

(iii) Suppose that X and Y are reflexive. IfKer(p) is not contained in Ker(Tr) 

and 7r is an Jr-representation, then Imp(6) ¢ 0. 

Proof: By Remark 1.6 and Lemma 1.7, both 7r and p in (i) are coherent F-  

representations. Hence (i) follows from Theorem 2.3. 
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Suppose tha t  J = Ker(Tr) is not contained in Ker(p) .  Denote  by p' ,  5' the 

restr ict ions of p, 5 to J .  By  L e m m a  2.2, in order to prove (ii) we need to show 

tha t  Imp(~ ' )  ¢ 0. I t  follows f rom L e m m a  1.4 tha t  p '  is an ~--representation.  

Since 5 is bimodule-closable,  

Ker(p ' )  = Ker(Tr) n Ker(p)  C_ Ker(5 ' ) .  

Replacing J by J~ Ker(p ' ) ,  we may  suppose t ha t  p '  is faithful. 

Let  p • J be such t ha t  p'(p) = h ® f is a rank-one projection.  I f  p ' (b) f  = 0 
for some b • J ,  then  p'(bp) = O. Hence bp = 0, so tha t  

5 ' ( b ) S  = 5 ' ( b ) p ' ( p ) S  = 5 ' (bp)  = o. 

As in Theorem 2.3, this allows us to define a linear opera tor  F:  F ( p ' ( b ) f )  = 5 ' (b) f  

on the subspace L = pt ( j ) . f  which is dense in Y such tha t  F implements  5 ~. 

To show tha t  F is closable, assume tha t  p ' (bn) f  --~ 0 and 5~(bn)S --+ x. Then  

p'(bnp) --+ 0 and 5'(bnp) = 5'(bn)p'(p) ~ h ® x. Since 5' is bimodule-closable,  

h ® x = 0, so t ha t  x = 0. Pa r t  (ii) is proved. 

Set J = Ker(p) ,  and let 5 ~, 7r t be the restrict ions of 5, 7r to J .  By  L e m m a  1.4, 

# is an .T-representation.  Since 5 is bimodule-closable,  

Ker(~r') = Ker(Tr) N Ker(p)  C_ Ker(5 ' ) .  

Replacing J by J~ K e r ( # ) ,  we assume tha t  n~ is faithful. We have 

5'(bc) = 7r'(b)5'(c) for b,c • J. 

Let  p C J be such t ha t  7r(p) = g ® e is a rank-one projection.  As in (ii), the 

opera to r  S: rc'(b)*g ---+ 5'(b)*g f rom D = 7d(J)*g C_ X*  into Y* is well defined 

and closable. For each a E ,4, we have 

5(a)* (Tr' (b)* g) = [5(be) - 5(b)p(a)]* g 

= ST:'(ba)*g - p(a)*S~r'(b)*g = [S~r(a)* - p(a)*S](Tr'(b)*g). 

Hence STr(a)* - p ( a ) * S  C_ 5(a)*. Set T = - S * .  Taking into account  the fact t ha t  

X and Y are reflexive, we obta in  from (2.2) tha t  T C Imp(5) .  I 

COROLLARY 2.6: Let  ~r and p be representations of  A on reflexive Banach  spaces 

X and Y,  respectively. 

(i) IfKer(Tr) NKer(p)  ~ I~NIp  (see (1.3)), then Imp(5)  ¢ 0 for each bimodule- 

closable (~r, p)-derivation & 
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(ii) / f  7r and p are 5r-representations, then Imp(5) ¢ 0 for each bimodule- 

closable (x, p)-derivation 5. 

Proo~ Let a ¢ I~ N/p  and a ¢ Ker0r ) n Ker(p). If both operators 7r(a) and 

p(a) are non-zero, then ~r and p are coherent ~--representations and (i) follows 

from Theorem 2.3. If ~r(a) % 0 and p(a) -- 0, then zr is an ~'-representation and 

Ker(p) is not contained in Ker(lr), so that  (i) follows from Theorem 2.5(iii). In 

the remaining case, (i) follows from Theorem 2.5(ii). 

Sinfilarly, part (ii) follows from Theorem 2.5. | 

Remark 2.7: The proof of Theorem 2.5(iii) was based on the reduction to the 

case p = 0. The example below shows that,  if the spaces X, Y are not reflexive, 

then, for some 5r-representations ~r, (Tr, 0)-derivations need not be implemented. 

Let Y -- X, A = 9v(X), and 7r(A) = A for A E A. Let T be a bounded 

operator on the second dual space X** such that T X  is not contained in X. 

Set (~(A) = A**T[X for A C A. Since A** maps X** into X,  ~(A) C B ( X ) .  

Clearly, (~ is a bimodule-closable (Tr, 0)-derivation. Since A has no invariant linear 

subspaces, a closed operator S implementing 5 would be everywhere defined and, 

hence, bounded. It follows that S = T, which is impossible. 

The proof of the following result is standard; we include it for the reader's 

convenience. 

PROPOSITION 2.8: Let A be a dosed, unital subalgebra of B(X) ,  let ~ be a 

bounded isomorphism from A into B(X) ,  and let Sp(A) = Sp(~a(A)) for A E A. 

I f  P is a projection in the norm-closure of cp(,A), then, for any e > O, there is a 

projection Q~ in ~(A)  such that [[P - Q,[[ < e. 

Proo~ Let U and V be disjoint closed disks centered at 0 and 1, respectively, and 

let L be the boundary of V. Then Sp(P) C U U V. Since the spectrum function 

B --+ Sp(B) is upper semicontinuous (see Theorem 3.4.2 in [A]), there exists 

6 > 0 such that,  for each B E B ( X ) ,  liB - Ptl < 6 implies that  Sp(B) C U U V. 

Let R( B , A)  = ( B - A 1 )  -1 and C =  max~eL[[R(P,A)] I. If l I P - B [ [  < C -1, 

then 

B - A I = [ 1 - ( P - B ) R ( P , A ) ] ( P - A 1 )  for e a c h A C L ,  

so that 

ItR(B, A)[I = R(P,A)  E[(p _ < C 
~ = o  - 1 - C I I P - B I I "  
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Therefore 

c 2 1 1 P  - Bll 
IIR(P, A) - R(B,  ~)ll = ]IR(P, ~ ) (B  - P ) R ( B ,  ~)ll < 1 -  CLIP- B[I" 

For each B E B(X) ,  consider the Riesz projection 

1 J~JLR(B'A)dA 
Q ( ~ ) -  2~i 

(see 1.2.3 in [GK]). We have Q(P) -- P and, by the above, 

l f L  lIP - Q(B)II = IIQ(P) - Q(B)II _< ~ [IR(P, A) - R(B,  A)IIdA -+ 0, 

if lIP - BII -+  0. 

Let B - -  VIA) for A E A. ThenSp(A)  = Sp(B) C U U V  and its boundary 
0Sp(A) C U U V. Let SpA(A ) be the spectrum of A in A. Since .4 is a closed 

subalgebra of B(X) ,  we have 0 SpA(A ) c_ O Sp(A) (see Theorem 3.2.1a(ii) in [A]). 
Taking this into account, we obtain SpA(A ) C U tO V. Hence R(A, A) C A, for 

each A e L, so that R(B,  A) = ~o(R(d, A)). 

Since A is closed, 

1 fLR(A 'A)dA  e A. Q ( A ) -  2rti 

Since Q(A) is the limit of the Riemann sums and ~o is bounded, 

(za)  Q(B) = Q(~(~4)) - 1 ~ 2rri ~o(R(A, A))dA = ~o(Q(A)). i 

Definition 2.9: A (r~, p)-derivation 5 of A is called bimodule-closed if 
(i) Ker(rr) A Ker(p) C Ker((f); 

(ii) rr(an) --+ A, p(a,~) -+ B and a(an) --+ C imply that there is a e A such that 
rr(a) = A, p(a) = B, 5(a) = C. 

If 5 is bimodule-closed, it is, clearly, bimodule-closable. 

THEOREM 2.10: Let 7r and p be irreducible representations of an algebra ~4 with 

identity on X and Y,  and let 5 be a bimodule-elosed (7r, p)-derivation of .4. I f  

the norm-closure of the operator algebra D = {rr(a)4-p(a) : a e A}  in B(X4-Y)  

contains a non-zero compact operator, then Ker(rr) AKer(p) # I t  ~ /p  (see (1.3)), 

so that at/east one of the representations rr and p is an 2r-representation. 

Proof Since 5 is bimodule-closed and 1 E A, the operator algebra 

0 p(a) : a E ,,4 
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on Z = XAcY is closed in B(Z) and l z  E B. The isomorphism ~o: & 

(7r~a) p(a)O ) f r o m B o n t o / ) i s b o u n d e d a n d S p ( ~ ) = S p ( ~ ( ~ ) ) .  

Let 

be a compact operator in 2 with K ¢ 0. For each a E .4, 

B(a) = B~(gt) = 0 Tp(a) E 2. 

Since 7r(.4) is transitive on X, it follows from Lemma 8.22 in [RR] that there is a E 

.4 such that 1 E Sp(KTr(a)). Then B(a) is compact and 1 E Sp(B(a)).  Let P ¢ 0 

be the finite-rank projection on the spectral subspace of B(a) corresponding to 

the eigenvalue 1. Since 2 is closed in B(Z), P belongs to 2 .  

By Proposition 2.8, there is a E A such that 

c2 ( a ) :  (7r~ a) p:a)) 

1 Hence 0 ¢ p(~) is a finite-rank projection, is a projection and [IP - ~(a)lI < ~. 
so that  7r(a) and p(a) are finite-rank projections, and at least one of them is 

non-zero. Thus a E Ker(zr) C/Ker(p) and a E I~ NIp. | 

Let ~ be a (Tr, p)-derivation of A, and set Z = X~-Y. Denote by A the 

closed operator subalgebra of B(Z) generated by 1z and by all the operators 

p(a) , where a E .4. Let Q be the projection on Y along X. Then 

~(A) := AIX and tS(A) := QAIY are representations of A on X and Y, respec- 

tively, and 5(A) := ( l z  - Q)AIY is a (~, tS)-derivation of 4 .  In a standard way, 

one proves the following result. 

LEMMA 2.11: If zr and p are irreducible and ~ is bimodule-closable, then the 
derivation 5 is bimodule-closed and Imp(g) = Imp(5). I 

Finally, we shall conclude the proof of Theorem 2.0. 

P roof  of Theorem 2.0: The closure of the algebra {~r(a)-i-p(a) : a E .4} coincides 

with the closure of the algebra {#(A)+t~(A) : A E A}, and therefore contains 

a non-zero compact operator. Since ~ is bimodule-closed, it follows from Corol- 

lary 2.6(i) and Theorem 2.10 that Imp(~) ¢ 0. Applying now Lemma 2.11, we 

complete the proof. I 

We denote by K(X) the ideal of all compact operators on X. 
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Definition 2.12: An irreducible representat ion is called a K - r e p r e s e n t a t i o n  if 

its image contains a non-zero compact  operator .  

COROLLARY 2.13: Let 7r and p be K-representations of .4  on X and Y.  
(i) I f  A has identity and 5 is a bimodule-closed Or, p)-derivation of  .4, then 

Ker(Tr) N Ker(p) # I~ AIp (see (1.3)), so that at least one of the represen- 

tations zr and p is an ~-representation. 

(ii) I f  X and Y are reflexive, then each bimodule-closable (Tr, p)-derivation of 
.4 is implemented by a closed operator. 

Proof." By Theorems 2.0 and 2.10, we need only show tha t  there exists c E .4 

such tha t  zr(c)~-p(c) is a non-zero compact  operator .  Let  7r(a) and p(b) be non- 

zero compact  operators.  If p(a) = 0 and 7r(b) -- 0, then set c = a + b. If p(a) ~ 0 
(the case 7r(b) ¢ 0 is similar), then there exists d C .4 such tha t  p(a)p(d)p(b) ~ O. 
In this case set c = adb. | 

PROBLEM 2.14: Does the conclusion of Theorem 2. 0 hold if  we weaken the condi- 
tion that the closure of the algebra {~(a )4p(a )  : a e .4} contains a non-zero com- 
pact operator, and only assume that I r ( . 4 )nK(X)  # {0} and p(.4) nK(V)  # {0}7 

The  next  corollary extends the result of Proposi t ion 3.4.9 in IS] (see also 

Theorem 3 in [BR]) to derivations of Banach algebras. 

COROLLARY 2.15: Let 5 be a bimodule-closed (Tr, 7r)-derivation of an algebra .4 

with identity and P be a projection in 7r(.4). For any e > 0, there is a~ E .4 such 
that 7r(a~) is a projection and lIP - n(a~)[[ _~ e. 

Proof: Without  loss of generality, we may suppose tha t  Ker(~r) = {0}. Since 5 

is bimodule-closed, 

B = {& = (7r~a) p(a) )  } ~(a) : a c A  

is a cl°sed subalgebra °f  B (X-~X)  and l E B" The map p: a --+ ( Ir~ a) 7r(a)O ) 

is a bounded isomorphism from B into B(X~-X)  and Sp(a) = Sp(~(a)) .  

The  project ion o) 
belongs to ~(B).  By Proposi t ion 2.8, for each e > 0, there exists aE E .4 such 

tha t  ~(5~) is a project ion and [1t 5 -  ~(a~)ll < e. Hence 7r(a~) is a project ion and 

l iP  - ~ (a~) [ [  < c. ! 
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3. S t r u c t u r e  o f  Imp(5) 

It is natural to begin the study of Imp(5) with the case when 5 = 0. This 

case is the simplest one but, on the other hand, fundamental because, for any 

T, S • Imp(6) with D(T) A D(S) # {0}, their difference implements 6 = 0 (in 

general, however, T - S is not defined). 

A linear operator T from Y into X i n t e r t w i n e s  representations :r and p of ~4 

on X and Y respectively, if its domain D(T) is p-invariant and 

7r(a)Ty = Tp(a)y for y • D(T). 

If 7r and p are irreducible and T # 0, then 

(3.1) Ker(T) = O, D(T) is dense in Y and TD(T) is dense in X. 

The set of all closed intertwining operators is denoted by Int(Tr, p). Thus Int(:r, p) 

= Imp(0). 

We define the maps 7: ~(A) -+ p(A) and 7': p(A) ---+ 7r(A) by 

7(7~(a)) = p(a), if Ker(~) C_ Ker(p); 
(3.2) 

?'(p(a)) = 7r(a), if Ker(p) C_ Ker(rr). 

For finite-dimensional irreducible representations, the classic Schur's lemma 

states that  Int(Tr, p) is trivial, whenever Ker(p) # Ker(rr), and is a one- 

dimensional space otherwise. For jr-representations the situation is similar. 

LEMMA 3.1 : 

(i) Let 7~ and p be irreducible. If Ker(rr) # Ker(p), then Int(Tr, p) = {0}. 

Moreover, any operator intertwining p and :r is zero. 

(ii) Let 7r and p be Jr-representations. IfKer(:r)  = Ker(p), then 

(1) there exists 0 # T_ • Int(Tr, p) such that any T • Int(Tr, p) is an 

extension of AT_ for some A • C; 

(2) the maps 7 and 7' are closable. 

Proof'. If 0 # T intertwines :r and p, then ~r(a)TD(T) = {0} for a E Ker(p), and 

Tp(b)D(T) = {0} for b • Ker(Tr). Taking (3.1) into account, we have Ker(Tr) = 

Ker(p). This proves (i). 

Suppose that  Ker(rr) = Ker(p). Then (see Remark 1.6) 7r and p are coherent, 

so that,  by Theorem 1.5, there exists p • .4 such that  

:r (p)=g®e,  p ( p ) = h ®  f w i t h g ( e ) = h ( f ) = l .  
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If, for some a E al, p(a)f  = 0, then p(ap) = 0. Hence rr(ap) = 0, and so 

7r(a)e = 0. This allows us to define a linear operator S on Ep := p(~4)f by 

setting Sp(a) f  = 7r(a)e for a E A. Obviously S intertwines 7r and p. By Lemma 

1.8, S is closable; we denote its closure by T_. 

Let 0 ¢ R E Int(Tr, p). Then f E Ep c D(R).  We have to prove that  the 

restriction of R to E is proportional to S. By (1.1), 

h ® 7r(a)Rf = h ® Rp(a) f  = Rp(a)p(p) = 7r(a)rr(p)R = R*g ® lr(a)e 

for a E A. Hence 7r(a)Rf = ATr(a)e for some 0 5£ A E (2. Therefore R f  = Ae. 

From this it follows that RIE p = AS because 

Rp(a ) f  = ~ ( a ) R f  = A~(a)e = ASp(a)e for a • A. 

Thus part (ii) (1) is proved. Part  (2) follows from (1) and (3.1). I 

Our next result shows in particular (when 5 = 0) that,  for reflexive X, Y, there 

is also 2r • Int(rr, p) such that  any T • Int(~r, p) is proportional to a restriction 

of ~b to D(T).  

THEOREM 3.2: Let 7r and p be f-representations of A on reflexive Banach spaces 

X and Y,  and let 5 be a bimodule-closable (7r, p)-derivation. 

(i) f iNer(p)  ¢ Ker(rr), then there are operators Tmi, and Tmax in Imp(b) such 

that Tmin C T C Tma x for any T • Imp(b). 

(ii) I fKer(p)  = Ker(Tr), then there are closable operators S, F from Ep into X 

such that 

(1) 0 5£ F E Int(rr, p) and S E Imp(b); 

(2) for each A E C, the operators S + AF are closable and the operators 

Rx := S + AF and ax  := ((S + AF)*IE:~)* belong to Imp(b); 

(3) for each T E Imp(b), there exists A E C such that R~ C_ T C_ G~. 

Proof'. By Corollary 2.6, there exists K E Imp(5). By Lemma 1.3, Ep C_ D(T) 

for each T E Imp(5). The operator S := K[Ep implements 5, so, by Lemma 2.1, 

E Imp(b). Clearly, the operator R(T)  =- TIE p - S intertwines lr and p. 

If Ker(p) ¢ Ker(rr), it follows from Lemma 3.1 that R(T)  = O, so T extends S. 

We have T* C_ S*. Since D(T*) is 7r*-invariant, it follows from Lemma 1.3 that  

E* C_ D(T*). Hence (T*IE*)* = (S*IE*)*. By Lemma 2.4, (T*IE*)* E Imp(b). 

Since T C_ (T*]E*)*, we have S c_ T c_ (S*IE*)* , and so, to finish the proof of 

(i), it only remains to set Tmin : /~" and Tmax = ((K')*IE*)*. 

If Ker(p) -- Ker(r ) ,  then, by Lemma 3.1, there exists 0 5£ T_ E Int(~r,p). 

Set F = T_ IEp. Then (1) is satisfied. The operators S + AF implement 5 for 
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A • C. Since, by Remark 1.6, zr and p are coherent representations, it follows 

from Lemmas 1.8 and 2.1 that S + AF are closable operators and R~ • Imp(5). 

By Lemma 2.4, G~ also belong to Imp(6). 

We obtain from the above discussion and Lemma 3.1 that,  for any T • Imp(6), 

there exists t • C such that R(T) -- T [ E p - S  -- tF. Thus T[Ep = R~[Ep. Hence 

Rx C_ T[Ep C_ T C_ (T*[E;)* = ((T[Ep)*IE•)* = (R*~[E;)* = G),, 

as required. I 

The examples below illustrate both possibilities. 

Example 3.3: Let R and S be closed densely defined operators from Y into X 

such that R C_ S. Consider the algebra 

A :  { d =  ( A1 d12~d2 ] • B ( X ? Y ) : A 2 D ( S )  c_ D(R), 

= (SA2 - A1S)]D(S)~, A12[D(S) 
) 

and set 7~(A) = A1, p(A) = A2, and 6(A) = A12. Then 7r and p are 9 r- 

representations of A, and 6 is a bimodule-closed (Tr, p)-derivation. The algebra ~4 

is reflexive, and the lattice of invariant subspaces of ,4 consists of {0}, X, Xq-Y 

and all L such that  G(R) C_ L C_ G(S), where G(R) and G(S) are the graphs of 

R and S. Hence R --- Tmi n is the smallest implementation of 5 and S = Tm~x is 

its largest implementation. | 

Example 3.4 [K]: Let R and T be densely defined, closed operators from Y into 
X such that: 

(1) D(R) N D(T) is dense in Y and D(R*) N D(T*) is dense in X*; 

(2) Ker(T) = {0} and TY is dense in X. 

Then, for each A C C, the operators R + AT and R* + ~T* are closable. Set 

Rx = R + AT and Sx = (R* + XT*)*, and consider the operator algebra 

0 A2 E B(Xq-Y) :  1)A2D(R) C_ D(R), & D ( r )  c_ D(T);  

2)A1T]D(T) ---- TA2[D(T); 3)A12[D(R) = (RA2 - A1R)[D(R) }. 

Set 7r(A) -- A1, p(A) = Au and 5(A) = A12. Then 7r and p are .~-representations 

of A and 5 is a bimodule-closed (~r, p)-derivation. It was proved in Theorem 3.5 

in [K] that: (1) all operators R~ and SA belong to Imp(6); and (2) an operator 
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G E Imp(6) if and only if D(G) is p-invariant and Rx C_ G C_ Sx for some A E C. 

l 

We will prove now that, if 7r and p are K-representations (see Definition 

2.12), then the structure of Imp(5) in many respects remains the same as for 

Jr-representations. 

THEOREM 3.5: Let 7r and p be K-representations of A on reflexive Banach spaces 

X and Y ,  and let ~ be a bimodule-closable (zr, p)-derivation. Suppose that 

(3.3) Ker0r ) = Ker(p) and the maps 7, 7' (see (3.2)) are closable. 

Then there are S E Imp(~), F E Int(~r, p), and D C_ X* such that 

(i) R~ = S + AF E Imp(5) and G~ = ( (S+ AF)*[D)* E Imp(5) for each A E C; 

(ii) for any T E Imp((~), there exists A E C such that R~ C_ T C_ G~. 

Otherwise there are two possibilities: 

(1) there is Tmin E IInp((~) such that Tmin C T for any T E Imp(6); 

(2) there is Tmax E Imp(6) such that T C Tmax for any T E Imp(fi). 

Proo~ It follows from Lemma 2.11 that there exist a unital Banach algebra 

with representations # and t~ on X and Y and a bimodule-closed (~, th)-derivation 

of A such that 7r(M) C ~(A), p(A) C_ ~(A), and Imp(6) = Imp(6). We also 

have Int(Tr, p) -- Int(#, #). Moreover, (3.3) holds if and only if Ker(~) = Ker(th) 
and the maps ~(~(~)) = th(&) and "~'(#(~)) = #(5) are closable for all & E 4 .  
Thus, without loss of generality, we may suppose that 6 is bimodule-closed. 

By Corollary 2.13, Imp(6) # 0 and Ker0r ) M Ker(p) # I :  M b ,  so that at least 

one of ~r and p is an jr-representation. 

If (3.3) holds, then, by Lemma 1.7, both ~r and p are jr-representations and 

the proof follows from Theorem 3.2(ii). 

Suppose now that (3.3) does not hold. If both ~r and p are S-representations, 

it follows from Theorem 3.2(i) that Imp(6) satisfies both (1) and (2). 

Suppose that p is an jr-representation and 7r is not. Then Ker0r ) = In. Since 

Ker0r ) n Ker(p) ¢ I~ n b = Ker0r) n/p ,  

there is a E J such that 0 ¢ p(a) is a finite-rank operator. Set J = Ker(Tr). By 

Lemma 1.4, p' := piJ is an jr-representation and Ep = Ep,. It follows from (1.4) 

that,  for each 0 ~ y E Ep, 

G = G ,  =p ' ( J )y  = p(J)y. 
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Let 0 ¢ K • Imp(5). Then D(K)  is p-invariant, so that, by Lemma 1.3(i), Ep 

is dense in Y and Ep C D(K) .  Set R -- K t E  p. Then ~(a)lE p = Rp(a)lE p for 

each a • J. Therefore, for each 0 ¢ y • Ep, we have 

6(b)(p(a)y) = 6(ba)y - zr(b)5(a)y = (Rp(b) - 7r(b)R)(p(a)y), 

for a • J, b • A. Since D(R)  -- Ep = p ( J ) y i s  dense i n Y ,  it follows that  R 

implements g. Hence, by Lemma 2.1(i), R • Imp(g). 

For any T • Imp((~), D(T)  is p-invariant, so that  Ep C_ D(T)  and 

~(a)lE p = Rp(a)IE p = Tp(a) lE p for each a • J. 

Hence (R - T)p(J)Ep = {0}, so that T]Ep = R. Setting Tmi, = R, we have 

Tmin C_ T for each T • Imp(~). 

Similarly, one can show that, if lr is an :Y-representation and p is not, then 

there is Tmax • Imp(g) such that T C_ Tmax for each T • Imp((~). | 

4. Implementing operators and invariant subspaces 

In this section we investigate the structure of norm-closed operator algebras/3 on 
Banach spaces X with only one non-trivial invariant subspace L C_ X. We impose 

some compactness conditions on B without which even the class of transitive 

operator algebras on X seems to be indescribable. 

To clarify the situation, let us consider the case where d imX < ~ .  In this 

case, for an appropriate basis in X, the algebra B either consists of all block- 

matrices ( A  C )  ( 0  A C )  0 B or of all block-matrices (this is a simple special 

case of Theorem 4.9 below). In both cases/3 contains the space ~L of all matrices 

( 0  C )  and dec°mp°ses int° the direct sum °f ~L and the bl°ck-diag°nal part" 0 

It should be noted that ~L has a simple, basis-independent description 

~L : {A • B ( X ) :  AL = {0}, A X  C_ L}, 

and it is isomorphic to B ( X / L ,  L). In the general case, we aim to prove that  B 

has a non-zero intersection with ¢L, which implies that B N gL is transitive or 

even weakly dense in eL. 

We consider now an arbitrary operator algebra B on X. Let L be a non-trivial 

invariant subspace of B. Denote by ~n the standard homomorphism from B into 

B ( X / L )  : ~L(A)(x  + L) = Ax  + L, and set 

BIL = {ALL: A • B}, ~L(B) = {(ilL(A): d • /3}.  
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In what follows the terms "weakly closed" and "weakly dense" mean closed or 

dense in the weak operator topology (WOT) on B(X).  

LEMMA 4.1: Let 13[L and 99L(B) be transitive algebras, and suppose that at least 
one of them contains a compact operator. If/~ N ~L ~ { 0}, then B M ~L is weakly 
dense in ~L. 

Proof: Set .Y = X/L.  For T E ~L, define an operator 2r in B(J~, L): T(x+L)  = 
Tx, for x • X.  Then T --+ 2r is an isometric, WOT-bicontinuous map from ~L 
onto B() ( ,  L). The image E of B M ~L in B()( ,  L) is a left BIL- and a right 

t 3 1 - i ~ o t  - - - w o  ~L (B)-module. Hence ~ o t  is a left and a right PL (B) -module. Since 

the algebras BIL and ~L(B) are transitive, and at least one of them contains 
- - w o t  

a compact operator, it follows from Theorem 8.23 in [RR] that either B1L = 

B(L), or p L ( - ~  °t = B(_~). Hence -E ~°t contains a rank-one operator, say f ® x ,  

where x • L, f • X* and, therefore, all rank-one operators (AIL)(f®X)~L(B) = 
FL(B)*f ® Ax, for A, B • B, belong to --E~Ot. Since the algebras BIL and ~L(B) 
are transitive, ~ o t  contains all rank-one operators. Thus -~-~ot = B(f( ,  L), so 

that  B M ~L is weakly dense in ~L. I 

Assume now that the invariant subspace L has a closed complement M in 

X. Let Q be the projection on M along L and consider the representations 

7r: A ~ AlL and p: A --+ QA[M of B on L and M. Then 5: A ~ (1 - Q)AIM is 

a (Tr, p)-derivation of B. 

We denote by £(5) the set of all invariant subspaees of B apart from {0}, L 

and X. Let F be an operator from M into L with domain D(F) C_ M. Its graph 

G(F) = {(Fy, y): y • D(F)}  is a subspace in X; it is closed if and only if F is 

closed. 

LEMMA 4.2: If  7r and p are irreducible representations, then F ~ G(F) is a 

bijection of Imp(5) onto £.(5). 

Proof'. By (0.1), G(F) E £(5) if F • Imp(g). Let K • /2(5). Since 7r is 

irreducible, either L C K,  or L N K = {0}. Since p is irreducible, in the first case 

K = X and in the second case there is a closed, densely defined operator F from 

M into L such that K = G(F). Since G(F) is invariant for all operators from B, 

F implements 5. I 

Note that under the isomorphism between M and X / L  the algebra ~M = 
p(B) = {QAIM: A • B} corresponds to ~L(B). 
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THEOREM 4.3: Let B be a norm-closed algebra of operators on a reflexive Banach 

space X.  Suppose that B has only one non-trivial invariant subspace L and that 

L has a closed complement M in X. If 

either 

(i) the closure of the "block-diagonal part"  {A(1 - Q) + QAQ : A E B} of B 

contains a non-zero compact operator, 

o r  

(ii) the algebras BIL and BM contain non-zero compact operators, 

then B N ~L is weakly dense in ~L. 

Proo~ Since L is the only non-trivial invariant subspace of B, lr and p are 

irreducible. Assume that BN~L ---- {0}. Then 5 is bimodule-closable. Since L and 

M are reflexive, it follows from Theorem 2.0 and Corollary 2.13 that  Imp(5) ~ 0. 

By Lemma 4.2, g(5) ~ O, so that B has another non-trivial invariant subspace 

apart from L. This contradiction shows that B N ~L ~ {0}. 
By Theorem 2.10 and Corollary 2.13, at least one of the representations 7r and 

p is an F-representation. Hence the weak density of B N ~L in ~L follows from 

Lemma 4.1. I 

Recall that  by ~ ( X )  we denote the ideal of all compact operators on X. For 

any subspace L in X, the space 

L ± = {h E X * :  h(y) = 0 for all y E L} 

in X* is closed in a(X*,  X)-topology. To study the case where L has no closed 

complement in X and X is non-reflexive, we consider the following pivotal result. 

PROPOSITION 4.4: Let B be a norm-closed subalgebra of B(X)  with only one 

non-trivial invariant subspace L, and suppose that B n ]C(X) ¢ {0}. 

(i) f f  BNIC(X) does not lie in ¢L, then there is a B*-invariant, closed subspace 

¢ (0} in X* such that B contains all operators f Q x, where f C ~, 
x E L .  

(ii) I?~L(BN )~(X)) ~ O, then, in addition, £ N L ± ~ {0}. 

Proof." Since L is the only non-trivial invariant subspace of/~, the algebras ~IL 

and qOL (B) are transitive. Let us prove first that B contains a compact operator 

T such that  1 c Sp(T). If K C B n ~ ( X )  and K}L # O, then, since the algebra 

BIL is transitive on L, it follows from [L] (see also [RR]) that there exists A e B 

with 1 E Sp(KAIL ). The operator T := K A  is compact and 1 C Sp(T). Suppose 
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that  ~L(/i') ~ 0. Since ~L(K) is compact and ~L(/3) is a transitive algebra on 

X / L ,  we have similarly from ILl that  there is A • / 3  with 

1 • Sp(~L(K)~L(A))  = Sp(~L(KA))  C_ Sp(KA).  

Thus again it suffices to set T = KA.  

Let P = Q(T) (see (2.3)) be the Riesz projection on the spectral subspace Z 

of T corresponding to {1}. Then d i m Z  < oc. Since/3 is norm-closed, P C B. 

Set ZL = Z n L. Since P L  C_ L, we have P L  = ZL. The algebra P/3PIZ has 

no invariant subspaces apart  from {0}, ZL, and Z. Indeed, since L is the only 

non-trivial invariant closed subspace of/3, 

(1) if 0 ~ z C ZL, then/3z is dense in L, so that  P/3Pz = ZL; 

(2) if 0 ¢ z E Z and z ¢ ZL, then/3z is dense in X, so that  P B P z  = Z; 

and the claim follows. 

If ZL = {0} or ZL = Z, the algebra P/3P]Z is transitive and, by the Burnside 

Theorem, P/3PIZ = B(Z) .  Hence it contains a rank-one operator g ® z. If 

{0} ¢ ZL ~ Z, the same conclusion follows from Theorem 4.3 applied to the 

algebra P/3PIZ. 

Since the set {x C X : g ® x E B} is a closed /3-invariant subspace of X,  it 

contains L. Similarly, the set £ = {S E X* : f ® x  E /3 for a l l x  E L} is a 

non-zero, closed subspace of X*. This proves (i). 

Assume now that  ~L(/3NK](X)) ~ 0. As above, there is a compact operator T 

in/3 with 1 E Sp(~L(T))  C_ Sp(T). Since ~L is bounded, it follows from (2.3) that  

~L(Q(T))  = Q(pL(T))  ¢ 0 is the Riesz projection onto the spectral subspace of 

¢pL(T) corresponding to {1}. Hence Z does not lie in L, so ZL ~ Z. 

Suppose that  ZL = {0} a n d 0  ¢ g Q z  E P/3PIZ. Then z E Z. For x E L, 

( gQz )x  = g(x)z. Since z ¢ L and L is invariant for g Q z ,  we have g E L ±. Thus 

l~ N L ± ¢ {0}. 

Let {0} # ZL # Z. Applying Theorem 4.3 to P/3PIZ, we obtain that  there 

are z E ZL and g C X* such that  g ® z C P B P I Z  and g(a) = 0 for a E ZL. Since 

g ® z = (g Q z )P  = P* g ® z, we have g = P* g. Since P L  = ZL, we have, for 

y E L ,  

g(y) = P* g(y) = g(Py)  = O. 

Thus g E L ±, so that  £ N L ± ~ {0}. I 

For each subspace 9fit in X*, we denote by 9Y~® L the linear span of all rank-one 

operators f ® x, f • 9~t, x • L. I t  is evident that  L ± ® L C EL. 
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THEOREM 4.5: Let 13 be a norm-closed subalgebra of B (X)  which contains a 

non-zero compact operator, and suppose that 13 has only one non-trivial invariant 

subspace L. 
(i) I f  the algebra 13 is either (1) weakly dosed, or (2) ~L(B n/C(X)) ¢ {0}, or 

(3) X is reflexive, then 

1 3 n c L  # {o}. 

(ii) If  either (1) ~L(13 n /C(X)) ¢ {0} (in particular, 

(2) (13nlC(X))IL ¢ {o} and x is re exive, 
then/3 N ~£L is weakly dense in ¢L. 
(iii) 

if  13 c_ l c ( x ) ) ,  or 

ff13 is weakly closed and 13 n 1C(X) does not lie in ~L, then ~L C 13. 

Proof." Part (i) follows from (ii) and (iii). Since L is the only non-trivial invariant 

subspace of B, the algebras BIL and ~L(B) are transitive. Suppose that BN/C(X) 

is not contained in ~L. Then at least one of the algebras BI L and ~OL(B) contains 
a non-zero compact operator, and it follows from Proposition 4.4 that  there is a 

B*-invariant, norm closed subspace 12 ¢ {0} in X* such that  12 ® L C_ B. 

Let 99L(13 n ]~(X)) • {0}. By Proposition 4.4(ii), 12 N L ± ¢ {0}. Therefore 

{0} ¢ 13 N (L m ® L) C_/3 N ~L and part (ii) (1) follows from Lemma 4.1. 

Let 13 N/C(X) contain an operator K such that  KIL ¢ 0. If X is reflexive, 

the only 13*-invariant subspaces of X* are {0}, L ±, and X*. Since £ ¢ {0}, it is 

either L or X*. Thus L ± ®  L C_ 12 ® L C_/3 n eL and (ii) (2) follows from Lemma 

4.1. 

Let 13 be weakly closed and ~v be the closure of 12 in the a(X*, X)-topology. 

Then £*~ ® L c_ 13. The space ~ '  is 13*-invariant and, by the bipolar theorem, 
there is a norm closed subspace M in X such that £*~ = M ±. The space M is 
B-invariant. Since 12 ¢ {0}, M is either {0} or L. In both cases L ± C_ £~, so 

L ± c..) L C B. Applying Lemma 4.1, we complete the proof. | 

The reflexivity of X in Theorem 4.5(i) (3) and (ii) (2) is essential as the 

following example shows. 

Example 4.6: Let H be a Hilbert space, X = B(H) and L =/C(H)  be the ideal 

of all compact operators on H. Then X is the second dual of L. Let B(L) be 

the algebra of all bounded operators on L. Set B = {A** : A E B(L)}. 

Then L is 13-invariant, A**IL = A for any A C B(L),  and IIA**II = I[A[[. Hence 

13 is a norm-closed subalgebra of B(X)  and 

13 n : {0}. 

If A E B(L) is a rank-one operator, then A** is also a rank-one operator. 
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Let us show that L is the only non-trivial invariant subspace of B. For B E 

B(H) ,  the operators AB, PB of left and right multiplication by B belong to B(X) ,  

preserve L and AB = (ABIL)**, ~tB ~- (~BIL)**.  Hence AB,PB C B and, by 

Calkin's Theorem, L is the only non-trivial invariant subspace of B. 

Remark 4.7: The above construction can be considered for any non-reflexive 

Banach space L: the algebra B = B(L)** on L** always contains non-zero com- 

pact operators and B n EL : {0}. However, for some L, B has other non-trivial 

invariant subspaces apart from L. An example of such a space is L = co~-I 1. 

We consider now the case when an operator algebra /~ consists of compact 

operators only. 

COROLLARY 4.8: Let B be an algebra of compact operators on X with only one 

non-trivial invariant space L. Then: 

(i) /~.ot contains EL; 

(ii) if, in addition, X / L  is reflexive and L has the approximation property, then 

EL n ~(X)  c_ t3. 

Proo~ Part (i) follows from Theorem 4.5(ii) (1). 

By Proposition 4.4(ii), B contains £1 ® L, where 121 -- 12 n L ± is a non- 

zero closed B*-invariant subspace in L ±. Since L ± is isomorphic to (X/L)*, it is 

reflexive, so 121 is closed in the c~(X*, X)-topology. By the bipolar theorem, there 

is a closed B-invariant subspace M in X such that  £5 = M z. Since L is the only 

non-trivial B-invariant subspace, 121 = L ±. Thus L ± ® L = E L n .~(X) C L~. 

Under the isomorphism of EL and B(X/L ,  L), EL Ogr(X) and EL NK(X) corre- 

spond to .~(X/L, L) and IC(X/L, L), respectively. It follows from Grothendieck's 

theorem that  the approximation property of L implies the density of 5c(Y, L) in 

K(Y, L), for any Banach space Y. Therefore, since B is norm-closed, E L n ] ~ ( Z )  C 

B. | 

For the case where X -- H is a Hilbert space, Corollary 4.8(ii) allows us to 

obtain a description of norm-closed operator algebras of compact operators with 

only one non-trivial invariant subspace. We shall use the symbol L ± for the 

orthogonal complement of L in H. 

THEOREM 4.9: irf a norm-dosed algebra 13 of compact operators on a Hilbert 

space H has only one non-trivial invariant subspace L, then 

U = ~ + (EL n IC(H)), 
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A ° ) 
/ A 

where the algebra ~ consists of compact operators of the form A -- t .;1 
\ 

with respect to the decomposition H = L i~ L ± and 

either 

(i) ~ is isomorphic to K(L) ~ K(L±);  

o r  

(ii) there exists a closed, densely defined, injective operator T from L ± into L 

such that Im(T) is dense in L, 

A2D(T)  C_ D(T)  and A I T  = TA2 f o r A E ~ .  

Proo~ Clearly, in the block-matrix form ~L coincides with the set of all upper 

( 0  0 C )  By Corollary 4.8(ii), /~ contains the set ~l = triangular matrices 0 " 

~c n / Q H )  of all compact operators in ~L. Hence 13 = ~ + gt, where ~ is a norm 

closed algebra which consists of block-diagonal operators. 

Let Q be the projection on L ± and consider the representations 7r: A -~ A[L 

and p: A--+ QA[L ± of B o n L  and L ±. Then ~r(B) = ~r(~) C_ K(L),  p(B) = 

c_ tO(L±). 
Suppose that Jp = Ker(pl~ ) ¢ {0}. Since 7r(~) is transitive on L, 7r(Jp) is a 

transitive, norm-closed subalgebra of ]C(L). Hence 7r(Jp) = ~(L)  and it follows 

that ~ is isomorphic to K~(L)g)tC(LZ). The same is true if J~ = Ker(Trl~ ) ¢ {0}. 

Suppose now that J~ = Jp = 0. Since ~ is a closed algebra of compact 

operators, 7r[~ and p[~ are 5r-representations of ~ and part (ii) follows from 

Lemma 3.1(ii). | 
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