IMPLEMENTATION OF DERIVATIONS AND INVARIANT SUBSPACES

ΒY

E. KISSIN

School of Communications Technology and Mathematical Sciences University of North London, Holloway, London N7 8DB, UK e-mail: e.kissin@unl.ac.uk

AND

V. I. Lomonosov

Department of Mathematics, Kent State University Kent, OH 44242, USA e-mail: lomonoso@mcs.kent.edu

AND

V. S. Shulman

School of Communications Technology and Mathematical Sciences University of North London, Holloway, London N7 8DB, UK and Department of Mathematics, Vologda State Technical University Vologda, Russia

e-mail: shulman_v@yahoo.com

ABSTRACT

The paper studies operator implementations of derivations of algebras. Let π and ρ be irreducible representations of an algebra \mathcal{A} on Banach spaces X and Y. A linear map $\delta: \mathcal{A} \to B(Y, X)$ is a (π, ρ) -derivation if $\delta(ab) = \pi(a)\delta(b) + \delta(a)\rho(b)$. It is bimodule-closable if $\pi(a_n) \to 0, \rho(a_n) \to$ 0 and $\delta(a_n) \to B$ imply B = 0. A closed operator F from Y into Ximplements δ if $F\rho(a) - \pi(a)F \subseteq \delta(a)$, for $a \in \mathcal{A}$. It is shown that if X, Y are reflexive and either the closure of the algebra $\{\pi(a) + \rho(a) :$ $a \in \mathcal{A}\}$ or both algebras $\pi(\mathcal{A}), \rho(\mathcal{A})$ contain compact operators, then the set $\operatorname{Imp}(\delta)$ of all implementations is not empty for any bimoduleclosable (π, ρ) -derivation δ , and either contains a minimal operator, or a

Received November 15, 2001

maximal operator, or two families of operators $R_{\lambda} \subseteq G_{\lambda}$, $\lambda \in \mathbb{C}$, such that $R_{\lambda} \subseteq T \subseteq G_{\lambda}$ for each $T \in \text{Imp}(\delta)$ and some λ .

These results are applied to the study of norm-closed operator algebras \mathcal{B} on Banach spaces X with only one invariant subspace L. It is proved that, if \mathcal{B} contains compact operators, X is reflexive and L has approximation property, then \mathcal{B} contains all compact "corner" operators: $BX \subseteq L$ and BL = 0. If L has a closed complement, the same is true if the closure of the block-diagonal part of \mathcal{B} contains compact operators. If X is non-reflexive, \mathcal{B} may have no "corner" operators. If, however, \mathcal{B} consists of compact operators then its weak closure contains all "corner" operators. A description is given of algebras of compact operators on Hilbert spaces with only one invariant subspace.

Introduction

Let X and Y be Banach spaces. We denote by B(X) the algebra of all bounded operators on X and by B(Y, X) the space of all bounded operators from Y into X. Let π and ρ be representations of an algebra \mathcal{A} on X and Y, respectively. A (π, ρ) -derivation is a linear map δ from \mathcal{A} into B(Y, X) satisfying the rule:

$$\delta(ab) = \pi(a)\delta(b) + \delta(a)\rho(b).$$

Clearly, any (π, ρ) -derivation is a usual, spatial derivation from \mathcal{A} into the \mathcal{A} -bimodule B(Y, X). A (π, ρ) -derivation is called **bimodule-closable** if

$$\pi(a_n) \to 0, \rho(a_n) \to 0 \text{ and } \delta(a_n) \to B \in B(Y, X) \text{ imply that } B = 0.$$

Throughout the paper the convergence is in the norm topology unless another topology is indicated.

Each operator F in B(Y, X) defines a bimodule-closable (π, ρ) -derivation δ_F of \mathcal{A} :

$$\delta_F(a) = \pi(a)F - F\rho(a)$$
 for all $a \in \mathcal{A}$.

More generally, a densely defined operator F from Y to X implements a (π, ρ) derivation δ of \mathcal{A} if its domain D(F) is ρ -invariant and if

(0.1)
$$\delta(a)|_{D(F)} = (F\rho(a) - \pi(a)F)|_{D(F)} \text{ for each } a \in \mathcal{A}.$$

We denote by $\text{Imp}(\delta)$ the set of all closed, densely-defined operators which implement δ . It is not difficult to see that any implemented derivation must be

3

bimodule-closable; we are interested in the conditions under which the converse is true.

The question "which unbounded derivations of an algebra \mathcal{A} are implemented by densely defined operators" is of a cohomological nature. Its "bounded" version — "which derivations of \mathcal{A} are implemented by bounded operators" — is the problem of the description of the first cohomology group of \mathcal{A} with coefficients in the bimodule B(Y, X).

Bratteli and Robinson [BR] studied the case where X = Y is a Hilbert space and δ is a closable *-derivation of a *-algebra \mathcal{A} in $\mathcal{B}(X)$. They proved that, if the closure of \mathcal{A} contains the ideal of all compact operators, then $\text{Imp}(\delta) \neq \emptyset$. In Section 2 we shall extend their result to bimodule-closable (π, ρ) -derivations of arbitrary algebras provided that the Banach spaces X, Y are reflexive, π, ρ are irreducible, and either the closure of the algebra $\{\pi(a) + \rho(a) : a \in \mathcal{A}\}$ or both algebras $\pi(\mathcal{A})$ and $\rho(\mathcal{A})$ contain non-zero compact operators.

Earlier in Section 1 we shall consider various properties of \mathcal{F} -representations — irreducible, infinite-dimensional representations which contain non-zero finiterank operators in their images. Their theory appears to be surprisingly close to the theory of finite-dimensional, irreducible representations. For example, as in the classic Schur lemma, the space of all intertwining operators for two \mathcal{F} representations is either trivial or "one-dimensional".

Section 3 describes the structure of the set $\operatorname{Imp}(\delta)$ when π, ρ are irreducible representations whose images contain non-zero compact operators. It is proved that $\operatorname{Imp}(\delta)$ either contains a *minimal* operator such that all $T \in \operatorname{Imp}(\delta)$ extend it, or it contains a *maximal* operator which extends every $T \in \operatorname{Imp}(\delta)$, or it contains two families of operator $\{R_{\lambda}\}_{\lambda \in \mathbb{C}}, \{G_{\lambda}\}_{\lambda \in \mathbb{C}}, R_{\lambda} \subseteq G_{\lambda}$, such that any $T \in \operatorname{Imp}(\delta)$ satisfies $R_{\lambda} \subseteq T \subseteq G_{\lambda}$ for some $\lambda \in \mathbb{C}$.

The most natural class of (π, ρ) -derivations consists of derivations of subalgebras \mathcal{A} of B(X) into B(X), where π and ρ are the identity representations. Another class is constituted by "corner" derivations of \mathcal{A} : let L be a closed \mathcal{A} invariant subspace of X, M be a closed complement of L in X, and Q be the projection on M along L. Then $\pi: \mathcal{A} \to \mathcal{A}|L$, $\rho: \mathcal{A} \to Q\mathcal{A}|M$, $\mathcal{A} \in \mathcal{A}$, are representations of \mathcal{A} and $\delta: \mathcal{A} \to (1-Q)\mathcal{A}|M$ is a (π, ρ) -derivation of \mathcal{A} . This allows us to apply the above results about derivations to the study of the structure of operator algebras with only one non-trivial invariant subspace.

Let \mathcal{B} be a norm-closed algebra of operators on a Banach space X, and suppose that \mathcal{B} contains a non-zero compact operator. If X is a reflexive space with the approximation property and \mathcal{B} has a trivial invariant subspace lattice ($\{0\}, X$), then (see [L] and also [RR]) \mathcal{B} contains all compact operators on X. It is natural to ask what can be said about \mathcal{B} if it only has one non-trivial invariant subspace L. In Section 4 we shall establish that, if X is reflexive and L has the approximation property, then \mathcal{B} must contain all compact operators T such that $TX \subseteq L$ and TL = 0 — compact "corner" operators. If L has a closed complement, the same is true under a weaker condition: the closure of the "block-diagonal part" of \mathcal{B} contains a non-zero compact operator. If, however, X is non-reflexive, then \mathcal{B} may have no non-trivial operators vanishing on L.

It is also proved, without the assumption of reflexivity of X, that if \mathcal{B} consists of compact operators then its weak closure contains all "corner" operators. We finish Section 4 by a description of algebras of compact operators on Hilbert spaces with only one non-trivial invariant subspace.

ACKNOWLEDGEMENT: The authors are extremely grateful to the referee for the valuable comments and suggestions for improvement.

1. Properties of *F*-representations

We denote by $\mathcal{F}(X)$ the algebra of all finite-rank operators on a Banach space X, and by X^* the dual space of X. For $x \in X$ and $g \in X^*$, the rank-one operator $g \otimes x$ acts on X by

$$g \otimes x(z) = g(z)x$$
 for $z \in X$.

For each operator A on X, we denote by D(A) its domain and by A^* the conjugate operator on X^* . If A is closable, that is, $x_n \to 0$ and $Ax_n \to x$ imply that x = 0, then we denote by \overline{A} its closure. If $x \in D(A)$ and $g \in D(A^*)$, then

(1.1)
$$A(g \otimes x) = g \otimes Ax \text{ and } (g \otimes x)A = A^*g \otimes x.$$

Hence

(1.2)
$$(g \otimes x)(h \otimes y) = g(y)(h \otimes x), \text{ so that } (g \otimes x)^2 = g(x)(g \otimes x).$$

If $g(x) \neq 0$ then $g \otimes tx$ is a rank-one projection for some $t \in \mathbb{C}$.

Let \mathcal{U} be a subalgebra of B(X). Then \mathcal{U} is *transitive* if its lattice of *closed* invariant subspaces consists only of $\{0\}$ and X. For each manifold L in X, we denote by $\mathcal{U}L$ the linear span of $\{Ax : A \in \mathcal{U}, x \in L\}$. Set

$$\mathcal{U}_{\mathcal{F}} = \mathcal{U} \cap \mathcal{F}(X).$$

If \mathcal{U} is transitive and $\mathcal{U}_{\mathcal{F}} \neq \{0\}$, then $\mathcal{U}_{\mathcal{F}}$ is also transitive on X and contains a rank-one projection ([B]). We need the following refinement of this result.

LEMMA 1.1: Let \mathcal{U} be a transitive subalgebra of B(X). If $\mathcal{U}_{\mathcal{F}} \neq \{0\}$, then the ideal J generated by all rank-one projections in \mathcal{U} coincides with $\mathcal{U}_{\mathcal{F}}$.

Proof: We prove the lemma by induction on the rank r(T) of operators T. If r(T) = 0, then $T = 0 \in J$. Assume that J contains all operators with rank smaller than k, and let $T \in \mathcal{U}_{\mathcal{F}}$ with r(T) = k.

Let $x = Ty \neq 0$. There is $S \in \mathcal{U}_{\mathcal{F}}$ with $Sx \neq 0$. Let R be a rank-one operator with RSx = y, and set P = TRS. Then Px = x. Since $\mathcal{U}_{\mathcal{F}}$ is transitive, it is weakly dense in B(X) (see Theorem 8.23 in [RR]), so that $T\mathcal{U}_{\mathcal{F}}S$ is weakly dense in TB(X)S. Since TB(X)S is finite-dimensional, $TB(X)S = T\mathcal{U}_{\mathcal{F}}S \subseteq \mathcal{U}_{\mathcal{F}}$. Hence $P \in \mathcal{U}_{\mathcal{F}}$. Since r(P) = 1 and Px = x, P is a rank-one projection, so that $P \in J$. We have T = PT + (1 - P)T and $PT \in J$. Since r((1 - P)T) < r(T), we have $(1 - P)T \in J$. Hence $T \in J$.

Definition 1.2: An irreducible representation π of an algebra \mathcal{A} on X is called an \mathcal{F} -representation if $\pi(\mathcal{A}) \cap \mathcal{F}(X) \neq \{0\}$.

For a representation π of \mathcal{A} on X, we set

(1.3)
$$I_{\pi} = \{a \in \mathcal{A} : \pi(a) \in \mathcal{F}(X)\}.$$

Then I_{π} is an ideal of \mathcal{A} and $\operatorname{Ker}(\pi) \subseteq I_{\pi}$. If π is an \mathcal{F} -representation of \mathcal{A} , then the operator algebra $\mathcal{U} = \pi(\mathcal{A})$ is transitive, $\operatorname{Ker}(\pi) \subset I_{\pi}$ and

$$\mathcal{U}_{\mathcal{F}} = \pi(\mathcal{A}) \cap \mathcal{F}(X) = \pi(I_{\pi}) \neq \{0\}.$$

Consider the subspaces

$$E_{\pi} = \pi(I_{\pi})X$$
 and $E_{\pi}^{*} = \pi(I_{\pi})^{*}X^{*}$

LEMMA 1.3: Let π be an \mathcal{F} -representation of an algebra \mathcal{A} on X. Then

(i) E_{π} is dense in X and contained in any non-zero π -invariant subspace of X,

(ii) $E_{\pi}^* \neq \{0\}$ is contained in any non-zero π^* -invariant subspace of X^* .

Proof: The subspace E_{π} is non-zero and π -invariant. Hence it is dense in X. If L is a non-zero, π -invariant subspace of X, it is dense in X. Hence, for any $a \in \mathcal{A}, \pi(a)L$ is dense in $\pi(a)X$. If $a \in I_{\pi}$, then $\dim \pi(a)X < \infty$, so that $\pi(a)X = \pi(a)L \subseteq L$. Hence $E_{\pi} \subseteq L$. Part (i) is proved.

Set $\mathcal{R} = \{r \in \mathcal{A} : \pi(r) \text{ is a rank-one operator}\}$. It follows from Lemma 1.1 that $\pi(I_{\pi})$ coincides with the linear manifold generated by all operators $\pi(r)$

with $r \in \mathcal{R}$. Let L be a non-zero π^* -invariant subspace of X^* . To prove (ii) it suffices to show that $\pi(r)^*X^* \subseteq L$ for each $r \in \mathcal{R}$.

Let $r \in \mathcal{R}$ and $\pi(r) = g \otimes x$, where $0 \neq x \in X$ and $0 \neq g \in X^*$. Then $\pi(r)^* = x \otimes g$ and $\pi(r)^*X^* = \mathbb{C}g$. For each $a \in \mathcal{A}$, $ar \in \mathcal{R}$ and $\pi(ar) = \pi(a)\pi(r) = g \otimes \pi(a)x$. Let $0 \neq h \in L$. Then $\pi(ar)^*h = (\pi(a)x \otimes g)h = h(\pi(a))g \in L$. Since π is irreducible, there exists $a \in \mathcal{A}$ such that $h(\pi(a)) \neq 0$. Hence $\pi(r)^*X^* = \mathbb{C}g \subseteq L$.

It follows from Lemma 1.3 that

(1.4)
$$E_{\pi} = \pi(I_{\pi})x = \pi(\mathcal{A})y \text{ and } E_{\pi}^* = \pi(I_{\pi})^*f = \pi(\mathcal{A})^*g,$$

for any $0 \neq x \in X$ and $0 \neq y \in E_{\pi}$, any $0 \neq f \in X^*$ and $0 \neq g \in E_{\pi}^*$.

LEMMA 1.4: Let π be a representation of \mathcal{A} , and let J be an ideal of \mathcal{A} not contained in Ker (π) .

- (i) If π is irreducible, then the representation $\sigma = \pi | J$ is irreducible.
- (ii) If π is an \mathcal{F} -representation, then σ an \mathcal{F} -representation and $E_{\sigma} = E_{\pi}$.

Proof: The representation σ irreducible, since, for each $x \in X$, we have

$$\overline{\pi(J)x} \supseteq \overline{\pi(\mathcal{A})\pi(J)\pi(\mathcal{A})x} = \overline{\pi(\mathcal{A})\pi(J)X} = X.$$

The representation $\pi | I_{\pi}$ is irreducible, whence $\overline{\pi(J)\pi(I_{\pi})X} = \overline{\pi(J)X} = X$. Since $\pi(J)\pi(I_{\pi}) \subseteq \pi(J) \cap \mathcal{F}(X)$, we have $\pi(J) \cap \mathcal{F}(X) \neq \{0\}$. Hence σ is an \mathcal{F} -representation.

Since $I_{\sigma} = J \cap I_{\pi}$, we have $E_{\sigma} \subseteq E_{\pi}$. On the other hand E_{σ} is π -invariant and, by Lemma 1.3(i), $E_{\pi} \subseteq E_{\sigma}$. Thus $E_{\pi} = E_{\sigma}$.

If π is an \mathcal{F} -representation of \mathcal{A} , then there is $p \in \mathcal{A}$ such that $\pi(p)$ is a rankone projection. For later investigations it is important to know the conditions when, for two \mathcal{F} -representations π, ρ of \mathcal{A} , there exists an element p in \mathcal{A} such that both $\pi(p)$ and $\rho(p)$ are rank-one projections.

We call \mathcal{F} -representations π, ρ coherent if

(1.5)
$$\rho(I_{\pi}) \neq \{0\} \text{ and } \pi(I_{\rho}) \neq \{0\}.$$

THEOREM 1.5: Let π and ρ be \mathcal{F} -representations of \mathcal{A} on X and Y, respectively. There exists $p \in \mathcal{A}$ such that $\pi(p)$ and $\rho(p)$ are rank-one projections if and only if π and ρ are coherent.

Proof: Let π and ρ be coherent \mathcal{F} -representations. Without loss of generality, we suppose that $\operatorname{Ker}(\pi) \cap \operatorname{Ker}(\rho) = \{0\}$. If π, ρ are not faithful, then, by Lemma 1.4,

 $\pi |\operatorname{Ker}(\rho), \rho| \operatorname{Ker}(\pi)$ are \mathcal{F} -representations. Thus there are $a \in \operatorname{Ker}(\pi), b \in \operatorname{Ker}(\rho)$ such that $\pi(b)$ and r(a) are rank-one projections. It remains to set p = a + b.

Assume now that π is faithful. There is $a \in \mathcal{A}$ such that $\rho(a)$ is a rank-one projection. Clearly, $\pi(a) \neq 0$. There is also $b \in \mathcal{A}$ such that $\rho(b) \neq 0$ and $\pi(b)$ has rank one. Indeed, $\pi(\operatorname{Ker}(\rho))$ is an ideal of $\pi(\mathcal{A})$. If it contains all rank one projections in $\pi(\mathcal{A})$, then, by Lemma 1.1, it contains $\pi(\mathcal{A}) \cap \mathcal{F}(X) = \pi(I_{\pi})$. Since π is faithful, $I_{\pi} \subseteq \operatorname{Ker}(\rho)$, which contradicts (1.5).

Clearly, $r(\pi(axb)) \leq 1$ and $r(\rho(axb)) \leq 1$ for each $x \in \mathcal{A}$. Since $\rho(A)$ is transitive, there is $x \in \mathcal{A}$ with $\rho(axb) \neq 0$. Since π is faithful, $\pi(axb) \neq 0$. Thus we have found an element $c \in \mathcal{A}$ such that $\pi(c)$ and $\rho(c)$ are rank-one operators, say

$$\pi(c) = g \otimes e \text{ and } \rho(c) = h \otimes f$$
, where $e \in X, g \in X^*, f \in Y$ and $h \in Y^*$.

Set $\mathcal{A}_1 = \{a \in \mathcal{A} : g(\pi(a)e) = 0\}$, $\mathcal{A}_2 = \{a \in \mathcal{A} : h(\rho(a)f) = 0\}$. Then \mathcal{A}_i are proper subspaces of \mathcal{A} , so that $\mathcal{A} \neq \mathcal{A}_1 \cup \mathcal{A}_2$. Hence there is $b \in \mathcal{A}$ such that $g(\pi(b)e) \neq 0$ and $h(\rho(b)f) \neq 0$. Taking (1.1) and (1.2) into account, we have that $\pi(bc) = g \odot \pi(b)e$ and $\rho(bc) = h \otimes \rho(b)f$ are non-nilpotent rank-one operators. Hence there is $0 \neq t \in \mathbb{C}$ such that the element p = tbc satisfies $\pi(p)^2 = \pi(p)$. Since π is faithful, $p^2 = p$, whence $\rho(p)$ is also a rank-one projection.

The converse is obvious.

Remark 1.6: The following conditions are sufficient for \mathcal{F} -representations π, ρ to be coherent:

- (a) $\operatorname{Ker}(\pi) = \operatorname{Ker}(\rho);$
- (b) $\operatorname{Ker}(\pi)$ is not contained in $\operatorname{Ker}(\rho)$ and $\operatorname{Ker}(\rho)$ is not contained in $\operatorname{Ker}(\pi)$.

Indeed, if $\operatorname{Ker}(\pi) = \operatorname{Ker}(\rho)$ and $\pi(I_{\rho}) = 0$, then $\rho(I_{\rho}) = 0$, which is impossible for an \mathcal{F} -representation. Sufficiency of (b) was established in Theorem 1.5, but it is easy to prove it directly: if π, ρ are not coherent, say $\pi(I_{\rho}) = 0$, then $\operatorname{Ker}(\rho) \subseteq \operatorname{Ker}(\pi)$.

LEMMA 1.7: Let π be an \mathcal{F} -representation, and suppose that ρ is irreducible. If $\operatorname{Ker}(\rho) = \operatorname{Ker}(\pi)$, then ρ is also an \mathcal{F} -representation.

Proof: Without loss of generality, we may assume that both π and ρ are faithful. Let $p \in \mathcal{A}$ be such that $\pi(p)$ is a rank-one projection. Then $\pi(p\mathcal{A}p)$ is onedimensional. Since π, ρ are faithful, the same is true for $p\mathcal{A}p$ and $p^2 = p$, so $\rho(p)$ is a projection. Since $\rho(\mathcal{A})$ is transitive, $\rho(p)\mathcal{A}x = \rho(p\mathcal{A}p)x$ is dense in $\rho(p)X$ for each $x \in \rho(p)X$. Hence $\rho(p)$ has rank one, so that ρ is an \mathcal{F} -representation.

LEMMA 1.8: Let π and ρ be coherent \mathcal{F} -representations of \mathcal{A} on X and Y, respectively, and let δ be a (π, ρ) -derivation of \mathcal{A} . Then any densely defined operator T which implements δ (see (0.1)) is closable.

Proof: By Theorem 1.5, there is $p \in \mathcal{A}$ such that $\pi(p) = g \otimes e$ and $\rho(p) = h \otimes f$ are rank-one projections, where $e \in X$, $g \in X^*$, $f \in Y$ and $h \in Y^*$. Then $\pi(p)e = g(e)e = e$. Since D(T) is ρ -invariant, $\rho(p)y = h(y)f$ belongs to D(T) for $y \in D(T)$. Since D(T) is dense in $Y, f \in D(T)$.

Let $y_n \to 0$ in Y and $Ty_n \to x$ in X. For each $a \in \mathcal{A}$, we have $\rho(a)y_n \to 0$. By (0.1),

$$g(\pi(a)x)e = \pi(p)\pi(a)x = \lim \pi(pa)Ty_n = \lim \delta(pa)y_n + \lim T\rho(pa)y_n$$
$$= \lim T\rho(p)\rho(a)y_n = \lim h(\rho(a)y_n)Tf = 0.$$

Hence $g(\pi(a)x) = 0$ for all $a \in \mathcal{A}$. Since π is irreducible, x = 0.

2. Existence of implementations of bimodule-closable derivations

Let π and ρ be representations of an algebra \mathcal{A} on Banach spaces X and Y and let $\mathcal{D} = \{\pi(a) \dotplus \rho(a) : a \in \mathcal{A}\}$ be the corresponding operator algebra on $X \dotplus Y$. In this section we prove the following generalization of the Bratteli–Robinson theorem (see [BR]).

THEOREM 2.0: Let π and ρ be irreducible representations of \mathcal{A} and let X and Y be reflexive Banach spaces. If the norm closure of the operator algebra \mathcal{D} contains a non-zero, compact operator, then any bimodule-closable (π, ρ) -derivation of \mathcal{A} is implemented by a closed, densely defined operator.

We will prove Theorem 2.0 in a few steps. First we require some auxiliary results.

LEMMA 2.1: Let δ be a (π, ρ) -derivation of \mathcal{A} .

- (i) If a closable operator F implements δ , then $\overline{F} \in \text{Imp}(\delta)$.
- (ii) If $\text{Imp}(\delta) \neq \emptyset$, then δ is bimodule-closable.

Proof: Let $x_n \in D(F), x_n \to x \in D(\overline{F})$ and $Fx_n \to \overline{F}x$. For $a \in \mathcal{A}$,

 $\rho(a)x_n \to \rho(a)x$ and $F\rho(a)x_n = \delta(a)x_n + \pi(a)Fx_n \to \delta(a)x + \pi(a)\overline{F}x.$

Vol. 134, 2003

Hence $\rho(a)x \in D(\overline{F})$ and $\delta(a)x = \overline{F}\rho(a)x - \pi(a)\overline{F}x$. Thus $\overline{F} \in \text{Imp}(\delta)$ and (i) is proved.

Let $R \in \text{Imp}(\delta)$, $\pi(a_n) \to 0$, $\rho(a_n) \to 0$ and $\delta(a_n) \to B$. For $y \in D(R)$, we have

$$By = \lim \delta(a_n)y = \lim (R\rho(a_n)y - \pi(a_n)Ry) = \lim R\rho(a_n)y.$$

Since R is closed, By = 0. Thus B = 0, so that δ is bimodule-closable.

LEMMA 2.2: Let δ be a (π, ρ) -derivation of \mathcal{A} , let J be an ideal of \mathcal{A} , and suppose that $\text{Imp}(\delta|J) \neq \emptyset$.

- (i) If ρ is irreducible and J is not contained in Ker (ρ) , then Imp $(\delta) \neq \emptyset$.
- (ii) If π, ρ are irreducible and J is not contained in Ker(π) ∩ Ker(ρ), then Imp(δ) ≠ Ø.

Proof: If $T \in \text{Imp}(\delta|J)$, then $\rho(J)D(T) \subseteq D(T)$. By Lemma 1.4, $\rho|J$ is irreducible, so that $\rho(J)D(T)$ is dense in Y. By (0.1), for each $a \in \mathcal{A}, b \in J$, we have

$$\begin{split} \delta(a)\rho(b)x &= \delta(ab)x - \pi(a)\delta(b)x = \pi(ab)Tx - T\rho(ab)x - \pi(a)[\pi(b)Tx - T\rho(b)x] \\ &= (T\rho(a) - \pi(a)T)\rho(b)x \end{split}$$

whenever $x \in D(T)$. Hence $T' = T|\rho(J)D(T)$ is a densely defined closable operator which implements δ . By Lemma 2.1(i), $\overline{T'} \in \text{Imp}(\delta)$.

Taking (i) into account, we may suppose that $J \subseteq \text{Ker}(\rho)$. Then $\delta(b)y = \pi(b)Ty$ for each $y \in D(T)$ and $b \in J$. The subspace

$$G = \{x + y \in X + Y : \delta(b)y = \pi(b)x \text{ for } b \in J\}$$

is closed in X + Y and contains the graph $\{Ty + y : y \in D(T)\}$ of T. If $x + 0 \in G$, then $\pi(b)x = 0$ for $b \in J$. Since $\operatorname{Ker}(\pi)$ does not contain J, it follows from Lemma 1.4 that $\pi(J)$ is transitive. Hence x = 0, so that G is a graph of a closed operator S: $G = \{y + Sy : y \in D(S)\}$ and $\delta(b)y = \pi(b)Sy$ for $y \in D(S)$ and $b \in J$.

The subspace D(S) is ρ -invariant. Indeed, for $a \in \mathcal{A}, b \in J$ and $y \in D(S)$,

$$\delta(b)(\rho(a)y) = \delta(ba)y - \pi(b)\delta(a)y = \pi(b)(\pi(a)y - \delta(a)y).$$

Therefore

$$\pi(b)(S\rho(a)y) = \delta(b)(\rho(a)y) = (\delta(ba)y - \pi(b)\delta(a)y) = \pi(b)(\pi(a)Sy - \delta(a)y).$$

Since $\pi(J)$ is transitive, $\delta(a)y = \pi(a)Sy - S\rho(a)y$. Thus $S \in \text{Imp}(\delta)$.

Clearly, if δ is a bimodule-closable (π, ρ) -derivation, then

(2.1)
$$\operatorname{Ker}(\pi) \cap \operatorname{Ker}(\rho) \subseteq \operatorname{Ker}(\delta).$$

The following result represents the first step in the proof of Theorem 2.0, and also shows that, for coherent \mathcal{F} -representations π, ρ , each (π, ρ) -derivation satisfying (2.1) is bimodule-closable.

THEOREM 2.3: Let π, ρ be coherent \mathcal{F} -representations, and let δ be a (π, ρ) derivation such that $\operatorname{Ker}(\pi) \cap \operatorname{Ker}(\rho) \subseteq \operatorname{Ker}(\delta)$. Then $\operatorname{Imp}(\delta) \neq \emptyset$.

Proof: By replacing \mathcal{A} by $\mathcal{A}/(\operatorname{Ker}(\pi) \cap \operatorname{Ker}(\rho))$, we may suppose that $\operatorname{Ker}(\pi) \cap \operatorname{Ker}(\rho) = \{0\}$. By Theorem 1.5, there exists $p \in \mathcal{A}$ such that $\pi(p) = g \otimes e$ and $\rho(p) = h \otimes f$ are rank-one projections: g(e) = f(h) = 1. Since $p^2 - p$ belongs to $\operatorname{Ker}(\pi) \cap \operatorname{Ker}(\rho)$, p is a projection.

Set $C = p\mathcal{A}p$. The representations $\pi(C)$ and $\rho(C)$ are one-dimensional. Hence $\dim(C) \leq 2$, since $\operatorname{Ker}(\pi) \cap \operatorname{Ker}(\rho) = 0$. If $\dim(C) = 1$, then $C = \mathbb{C}p$. As in the proof of Theorem 8 in [BR], setting $T = \delta(p)$, $\delta_T(a) = T\rho(a) - \pi(a)T$ and $\Delta = \delta - \delta_T$, we obtain that Δ is a (π, ρ) -derivation and $\Delta(p) = 0$. Therefore $\Delta(C) = 0$.

Now suppose that $\dim(C) = 2$. Then $C = \mathbb{C}p + \mathbb{C}q$, where $\pi(q) = 0$ and $\rho(p-q) = 0$. Setting $T = \delta(p)$ and $\Delta' = \delta - \delta_T$ as above, we have $\Delta'(p) = 0$. Now set $S = \Delta'(q)$ and $\Delta = \Delta' - \delta_S$. Since pq = qp = q, we have

 $\Delta'(q) = \Delta'(pq) = \pi(p)\Delta'(q) \quad \text{and} \quad \Delta'(q) = \Delta'(qp) = \Delta'(q)\rho(p).$

Therefore, taking into account the fact that $\rho(q) = \rho(p)$, we obtain

$$\begin{split} \Delta(p) &= \Delta'(p) - (\Delta'(q)\rho(p) - \pi(p)\Delta'(q)) = 0, \\ \Delta(q) &= \Delta'(q) - (\Delta'(q)\rho(q) - \pi(q)\Delta'(q)) = \Delta'(q) - \Delta'(q)\rho(p) = 0. \end{split}$$

Thus $\Delta(C) = 0$.

The condition that $\Delta(pap) = 0$ for $a \in \mathcal{A}$ gives $\pi(p)\Delta(a)\rho(p) = 0$. Making use of (1.1) and (1.2), we have $g(\Delta(a)f) = 0$. Applying this in the case where a = cb, we obtain

$$g(\pi(c)\Delta(b)f) + g(\Delta(c)\rho(b)f) = 0 \text{ for } b, c \in \mathcal{A}.$$

If $\rho(b)f = 0$, for some b in \mathcal{A} , then $g(\pi(c)\Delta(b)f) = 0$, for all $c \in \mathcal{A}$, and hence $\Delta(b)f = 0$, since $\pi(\mathcal{A})$ is transitive. This allows us to define a linear operator

Vol. 134, 2003

F: $F(\rho(b)f) = \Delta(b)f$ on the subspace $L = \rho(\mathcal{A})f$, which is dense in Y. The operator F implements Δ :

$$\Delta(a)(\rho(b)f) = \Delta(ab)f - \pi(a)\Delta(b)f = (F\rho(a) - \pi(a)F)(\rho(b)f).$$

By Lemma 1.8, F is closable, so $\overline{F} \in \text{Imp}(\Delta)$, which implies that $\text{Imp}(\delta) \neq \emptyset$.

Let π, ρ be \mathcal{F} -representations, δ be a (π, ρ) -derivation, and let $T \in \text{Imp}(\delta)$. Then D(T) is ρ -invariant and $D(T^*)$ is π^* -invariant. By Lemma 1.3, $E_{\rho} \subseteq D(T)$ and $E_{\pi}^* \subseteq D(T^*)$. Clearly, $\overline{T|E_{\rho}} \in \text{Imp}(\delta)$ and, in the case where both X and Y are reflexive,

$$\overline{T|E_{\rho}} \subseteq T \subseteq (T^*|E_{\pi}^*)^*.$$

LEMMA 2.4: If X, Y are reflexive, then $(T^*|E^*_{\pi})^* \in \text{Imp}(\delta)$.

Proof: Let $A \in B(X)$, $B \in B(Y)$ and $C \in B(Y, X)$ be such that

 $BD(T) \subseteq D(T)$ and $AT + TB \subseteq C$.

A standard argument shows that

(2.2)
$$A^*D(T^*) \subseteq D(T^*) \quad \text{and} \quad T^*A^* + B^*T^* \subseteq C^*.$$

Applying this to the inclusion $T\rho(a) - \pi(a)T \subseteq \delta(a)$, we obtain

$$\pi(a)^*D(T^*) \subseteq D(T^*) \quad \text{and} \quad \rho(a)^*T^* - T^*\pi(a)^* \subseteq \delta(a)^* \quad \text{for each } a \in \mathcal{A}.$$

Taking into account the fact that E_{π}^* is π^* -invariant and contained in $D(T^*)$, denote $T^*|E_{\pi}^*$ by S. Then $\rho(a)^*S - S\pi(a)^* \subseteq \delta(a)^*$ and, since X, Y are reflexive, $S^*\rho(a) - \pi(a)S^* \subseteq \delta(a)$. This means that $S^* \in \text{Imp}(\delta)$.

THEOREM 2.5: Let π and ρ be irreducible representations of \mathcal{A} , and let δ be a bimodule-closable (π, ρ) -derivation.

- (i) If $\operatorname{Ker}(\pi) = \operatorname{Ker}(\rho)$ and π or ρ is an \mathcal{F} -representation, then $\operatorname{Imp}(\delta) \neq \emptyset$.
- (ii) If Ker(π) is not contained in Ker(ρ) and ρ is an F-representation, then Imp(δ) ≠ Ø.
- (iii) Suppose that X and Y are reflexive. If $\text{Ker}(\rho)$ is not contained in $\text{Ker}(\pi)$ and π is an \mathcal{F} -representation, then $\text{Imp}(\delta) \neq \emptyset$.

Proof: By Remark 1.6 and Lemma 1.7, both π and ρ in (i) are coherent \mathcal{F} -representations. Hence (i) follows from Theorem 2.3.

Suppose that $J = \text{Ker}(\pi)$ is not contained in $\text{Ker}(\rho)$. Denote by ρ', δ' the restrictions of ρ, δ to J. By Lemma 2.2, in order to prove (ii) we need to show that $\text{Imp}(\delta') \neq \emptyset$. It follows from Lemma 1.4 that ρ' is an \mathcal{F} -representation. Since δ is bimodule-closable,

$$\operatorname{Ker}(\rho') = \operatorname{Ker}(\pi) \cap \operatorname{Ker}(\rho) \subseteq \operatorname{Ker}(\delta').$$

Replacing J by $J/\operatorname{Ker}(\rho')$, we may suppose that ρ' is faithful.

Let $p \in J$ be such that $\rho'(p) = h \otimes f$ is a rank-one projection. If $\rho'(b)f = 0$ for some $b \in J$, then $\rho'(bp) = 0$. Hence bp = 0, so that

$$\delta'(b)f = \delta'(b)\rho'(p)f = \delta'(bp) = 0.$$

As in Theorem 2.3, this allows us to define a linear operator F: $F(\rho'(b)f) = \delta'(b)f$ on the subspace $L = \rho'(J)f$ which is dense in Y such that F implements δ' .

To show that F is closable, assume that $\rho'(b_n)f \to 0$ and $\delta'(b_n)f \to x$. Then $\rho'(b_np) \to 0$ and $\delta'(b_np) = \delta'(b_n)\rho'(p) \to h \otimes x$. Since δ' is bimodule-closable, $h \otimes x = 0$, so that x = 0. Part (ii) is proved.

Set $J = \text{Ker}(\rho)$, and let δ', π' be the restrictions of δ, π to J. By Lemma 1.4, π' is an \mathcal{F} -representation. Since δ is bimodule-closable,

$$\operatorname{Ker}(\pi') = \operatorname{Ker}(\pi) \cap \operatorname{Ker}(\rho) \subseteq \operatorname{Ker}(\delta').$$

Replacing J by $J/\operatorname{Ker}(\pi')$, we assume that π' is faithful. We have

$$\delta'(bc) = \pi'(b)\delta'(c) \text{ for } b, c \in J.$$

Let $p \in J$ be such that $\pi(p) = g \otimes e$ is a rank-one projection. As in (ii), the operator $S: \pi'(b)^*g \to \delta'(b)^*g$ from $D = \pi'(J)^*g \subseteq X^*$ into Y^* is well defined and closable. For each $a \in \mathcal{A}$, we have

$$\begin{split} \delta(a)^*(\pi'(b)^*g) &= [\delta(ba) - \delta(b)\rho(a)]^*g \\ &= S\pi'(ba)^*g - \rho(a)^*S\pi'(b)^*g = [S\pi(a)^* - \rho(a)^*S](\pi'(b)^*g). \end{split}$$

Hence $S\pi(a)^* - \rho(a)^*S \subseteq \delta(a)^*$. Set $T = -S^*$. Taking into account the fact that X and Y are reflexive, we obtain from (2.2) that $T \in \text{Imp}(\delta)$.

COROLLARY 2.6: Let π and ρ be representations of \mathcal{A} on reflexive Banach spaces X and Y, respectively.

 (i) If Ker(π) ∩ Ker(ρ) ≠ I_π ∩ I_ρ (see (1.3)), then Imp(δ) ≠ Ø for each bimoduleclosable (π, ρ)-derivation δ. Vol. 134, 2003

13

(ii) If π and ρ are \mathcal{F} -representations, then $\text{Imp}(\delta) \neq \emptyset$ for each bimoduleclosable (π, ρ) -derivation δ .

Proof: Let $a \in I_{\pi} \cap I_{\rho}$ and $a \notin \operatorname{Ker}(\pi) \cap \operatorname{Ker}(\rho)$. If both operators $\pi(a)$ and $\rho(a)$ are non-zero, then π and ρ are coherent \mathcal{F} -representations and (i) follows from Theorem 2.3. If $\pi(a) \neq 0$ and $\rho(a) = 0$, then π is an \mathcal{F} -representation and $\operatorname{Ker}(\rho)$ is not contained in $\operatorname{Ker}(\pi)$, so that (i) follows from Theorem 2.5(ii). In the remaining case, (i) follows from Theorem 2.5(ii).

Similarly, part (ii) follows from Theorem 2.5.

Remark 2.7: The proof of Theorem 2.5(iii) was based on the reduction to the case $\rho = 0$. The example below shows that, if the spaces X, Y are not reflexive, then, for some \mathcal{F} -representations π , $(\pi, 0)$ -derivations need not be implemented.

Let Y = X, $\mathcal{A} = \mathcal{F}(X)$, and $\pi(A) = A$ for $A \in \mathcal{A}$. Let T be a bounded operator on the second dual space X^{**} such that TX is not contained in X. Set $\delta(A) = A^{**}T|X$ for $A \in \mathcal{A}$. Since A^{**} maps X^{**} into X, $\delta(A) \in B(X)$. Clearly, δ is a bimodule-closable $(\pi, 0)$ -derivation. Since \mathcal{A} has no invariant linear subspaces, a closed operator S implementing δ would be everywhere defined and, hence, bounded. It follows that S = T, which is impossible.

The proof of the following result is standard; we include it for the reader's convenience.

PROPOSITION 2.8: Let \mathcal{A} be a closed, unital subalgebra of B(X), let φ be a bounded isomorphism from \mathcal{A} into B(X), and let $\operatorname{Sp}(A) = \operatorname{Sp}(\varphi(A))$ for $A \in \mathcal{A}$. If P is a projection in the norm-closure of $\varphi(\mathcal{A})$, then, for any e > 0, there is a projection Q_{ε} in $\varphi(\mathcal{A})$ such that $||P - Q_{\varepsilon}|| < e$.

Proof: Let U and V be disjoint closed disks centered at 0 and 1, respectively, and let L be the boundary of V. Then $\operatorname{Sp}(P) \subset U \cup V$. Since the spectrum function $B \to \operatorname{Sp}(B)$ is upper semicontinuous (see Theorem 3.4.2 in [A]), there exists $\delta > 0$ such that, for each $B \in B(X)$, $||B - P|| < \delta$ implies that $\operatorname{Sp}(B) \subset U \cup V$.

Let $R(B,\lambda) = (B - \lambda 1)^{-1}$ and $C = \max_{\lambda \in L} ||R(P,\lambda)||$. If $||P - B|| < C^{-1}$, then

$$B - \lambda 1 = [1 - (P - B)R(P, \lambda)](P - \lambda 1) \text{ for each } \lambda \in L,$$

so that

$$||R(B,\lambda)|| = ||R(P,\lambda)\sum_{n=0}^{\infty} [(P-B)R(P,\lambda)]^n|| \le \frac{C}{1-C||P-B||}.$$

Therefore

$$||R(P,\lambda) - R(B,\lambda)|| = ||R(P,\lambda)(B-P)R(B,\lambda)|| \le \frac{C^2 ||P-B||}{1 - C||P-B||}$$

For each $B \in B(X)$, consider the Riesz projection

$$Q(B) = -\frac{1}{2\pi i} \oint_L R(B,\lambda) d\lambda$$

(see I.2.3 in [GK]). We have Q(P) = P and, by the above,

$$||P - Q(B)|| = ||Q(P) - Q(B)|| \le \frac{1}{2\pi} \oint_L ||R(P,\lambda) - R(B,\lambda)||d\lambda \to 0,$$

if $||P - B|| \to 0$.

Let $B = \varphi(\mathcal{A})$ for $A \in \mathcal{A}$. Then $\operatorname{Sp}(A) = \operatorname{Sp}(B) \subset U \cup V$ and its boundary $\partial \operatorname{Sp}(A) \subset U \cup V$. Let $\operatorname{Sp}_{\mathcal{A}}(A)$ be the spectrum of A in \mathcal{A} . Since \mathcal{A} is a closed subalgebra of B(X), we have $\partial \operatorname{Sp}_{\mathcal{A}}(A) \subseteq \partial \operatorname{Sp}(A)$ (see Theorem 3.2.13(ii) in [A]). Taking this into account, we obtain $\operatorname{Sp}_{\mathcal{A}}(A) \subset U \cup V$. Hence $R(A, \lambda) \in \mathcal{A}$, for each $\lambda \in L$, so that $R(B, \lambda) = \varphi(R(A, \lambda))$.

Since \mathcal{A} is closed,

$$Q(A) = -\frac{1}{2\pi i} \oint_L R(A, \lambda) d\lambda \in \mathcal{A}.$$

Since Q(A) is the limit of the Riemann sums and φ is bounded,

(2.3)
$$Q(B) = Q(\varphi(\mathcal{A})) = -\frac{1}{2\pi i} \oint_{L} \varphi(R(A,\lambda)) d\lambda = \varphi(Q(A)). \quad \blacksquare$$

Definition 2.9: A (π, ρ) -derivation δ of \mathcal{A} is called bimodule-closed if

- (i) $\operatorname{Ker}(\pi) \cap \operatorname{Ker}(\rho) \subseteq \operatorname{Ker}(\delta)$;
- (ii) $\pi(a_n) \to A, \ \rho(a_n) \to B \text{ and } \delta(a_n) \to C \text{ imply that there is } a \in \mathcal{A} \text{ such that} \\ \pi(a) = A, \ \rho(a) = B, \ \delta(a) = C.$

If δ is bimodule-closed, it is, clearly, bimodule-closable.

THEOREM 2.10: Let π and ρ be irreducible representations of an algebra \mathcal{A} with identity on X and Y, and let δ be a bimodule-closed (π, ρ) -derivation of \mathcal{A} . If the norm-closure of the operator algebra $\mathcal{D} = \{\pi(a) \dotplus \rho(a) : a \in \mathcal{A}\}$ in $B(X \dotplus Y)$ contains a non-zero compact operator, then $\operatorname{Ker}(\pi) \cap \operatorname{Ker}(\rho) \neq I_{\pi} \cap I_{\rho}$ (see (1.3)), so that at least one of the representations π and ρ is an \mathcal{F} -representation.

Proof: Since δ is bimodule-closed and $1 \in \mathcal{A}$, the operator algebra

$$\mathcal{B} = \left\{ \hat{a} = \begin{pmatrix} \pi(a) & \delta(a) \\ 0 & \rho(a) \end{pmatrix} : a \in \mathcal{A} \right\}$$

on Z = X + Y is closed in B(Z) and $1_Z \in \mathcal{B}$. The isomorphism $\varphi: \hat{a} \to \begin{pmatrix} \pi(a) & 0 \\ 0 & \rho(a) \end{pmatrix}$ from \mathcal{B} onto \mathcal{D} is bounded and $\operatorname{Sp}(\hat{a}) = \operatorname{Sp}(\varphi(\hat{a}))$. Let

$$B = \begin{pmatrix} K & 0 \\ 0 & T \end{pmatrix}$$

be a compact operator in $\overline{\mathcal{D}}$ with $K \neq 0$. For each $a \in \mathcal{A}$,

$$B(a) = B\varphi(\hat{a}) = \begin{pmatrix} K\pi(a) & 0\\ 0 & T\rho(a) \end{pmatrix} \in \bar{\mathcal{D}}.$$

Since $\pi(\mathcal{A})$ is transitive on X, it follows from Lemma 8.22 in [RR] that there is $a \in \mathcal{A}$ such that $1 \in \operatorname{Sp}(K\pi(a))$. Then B(a) is compact and $1 \in \operatorname{Sp}(B(a))$. Let $P \neq 0$ be the finite-rank projection on the spectral subspace of B(a) corresponding to the eigenvalue 1. Since $\overline{\mathcal{D}}$ is closed in B(Z), P belongs to $\overline{\mathcal{D}}$.

By Proposition 2.8, there is $a \in \mathcal{A}$ such that

$$arphi(\hat{a}) = egin{pmatrix} \pi(a) & 0 \ 0 &
ho(a) \end{pmatrix}$$

is a projection and $||P - \varphi(\hat{a})|| < \frac{1}{2}$. Hence $0 \neq \varphi(\hat{a})$ is a finite-rank projection, so that $\pi(a)$ and $\rho(a)$ are finite-rank projections, and at least one of them is non-zero. Thus $a \in \text{Ker}(\pi) \cap \text{Ker}(\rho)$ and $a \in I_{\pi} \cap I_{\rho}$.

Let δ be a (π, ρ) -derivation of \mathcal{A} , and set Z = X + Y. Denote by $\tilde{\mathcal{A}}$ the closed operator subalgebra of B(Z) generated by 1_Z and by all the operators $\begin{pmatrix} \pi(a) & \delta(a) \\ 0 & \rho(a) \end{pmatrix}$, where $a \in \mathcal{A}$. Let Q be the projection on Y along X. Then $\tilde{\pi}(A) := A|X$ and $\tilde{\rho}(A) := QA|Y$ are representations of $\tilde{\mathcal{A}}$ on X and Y, respectively, and $\tilde{\delta}(A) := (1_Z - Q)A|Y$ is a $(\tilde{\pi}, \tilde{\rho})$ -derivation of $\tilde{\mathcal{A}}$. In a standard way, one proves the following result.

LEMMA 2.11: If π and ρ are irreducible and δ is bimodule-closable, then the derivation $\tilde{\delta}$ is bimodule-closed and $\text{Imp}(\tilde{\delta}) = \text{Imp}(\delta)$.

Finally, we shall conclude the proof of Theorem 2.0.

Proof of Theorem 2.0: The closure of the algebra $\{\pi(a) + \rho(a) : a \in \mathcal{A}\}$ coincides with the closure of the algebra $\{\tilde{\pi}(A) + \tilde{\rho}(A) : A \in \tilde{\mathcal{A}}\}$, and therefore contains a non-zero compact operator. Since $\tilde{\delta}$ is bimodule-closed, it follows from Corollary 2.6(i) and Theorem 2.10 that $\operatorname{Imp}(\tilde{\delta}) \neq \emptyset$. Applying now Lemma 2.11, we complete the proof.

We denote by $\mathcal{K}(X)$ the ideal of all compact operators on X.

Definition 2.12: An irreducible representation is called a \mathcal{K} -representation if its image contains a non-zero compact operator.

COROLLARY 2.13: Let π and ρ be \mathcal{K} -representations of \mathcal{A} on X and Y.

- (i) If A has identity and δ is a bimodule-closed (π, ρ)-derivation of A, then Ker(π) ∩ Ker(ρ) ≠ I_π ∩ I_ρ (see (1.3)), so that at least one of the representations π and ρ is an F-representation.
- (ii) If X and Y are reflexive, then each bimodule-closable (π, ρ)-derivation of A is implemented by a closed operator.

Proof: By Theorems 2.0 and 2.10, we need only show that there exists $c \in \mathcal{A}$ such that $\pi(c) \dot{+} \rho(c)$ is a non-zero compact operator. Let $\pi(a)$ and $\rho(b)$ be non-zero compact operators. If $\rho(a) = 0$ and $\pi(b) = 0$, then set c = a + b. If $\rho(a) \neq 0$ (the case $\pi(b) \neq 0$ is similar), then there exists $d \in \mathcal{A}$ such that $\rho(a)\rho(d)\rho(b) \neq 0$. In this case set c = adb.

PROBLEM 2.14: Does the conclusion of Theorem 2.0 hold if we weaken the condition that the closure of the algebra $\{\pi(a) \not\models \rho(a) : a \in \mathcal{A}\}$ contains a non-zero compact operator, and only assume that $\overline{\pi(\mathcal{A})} \cap \mathcal{K}(X) \neq \{0\}$ and $\overline{\rho(\mathcal{A})} \cap \mathcal{K}(Y) \neq \{0\}$?

The next corollary extends the result of Proposition 3.4.9 in [S] (see also Theorem 3 in [BR]) to derivations of Banach algebras.

COROLLARY 2.15: Let δ be a bimodule-closed (π, π) -derivation of an algebra \mathcal{A} with identity and P be a projection in $\overline{\pi(\mathcal{A})}$. For any $\varepsilon > 0$, there is $a_{\varepsilon} \in \mathcal{A}$ such that $\pi(a_{\varepsilon})$ is a projection and $\|P - \pi(a_{\varepsilon})\| \leq \varepsilon$.

Proof: Without loss of generality, we may suppose that $\text{Ker}(\pi) = \{0\}$. Since δ is bimodule-closed,

$$\mathcal{B} = \left\{ \hat{a} = \begin{pmatrix} \pi(a) & \rho(a) \\ 0 & \pi(a) \end{pmatrix} : a \in \mathcal{A} \right\}$$

is a closed subalgebra of B(X + X) and $1 \in \mathcal{B}$. The map $\varphi: \hat{a} \to \begin{pmatrix} \pi(a) & 0 \\ 0 & \pi(a) \end{pmatrix}$ is a bounded isomorphism from \mathcal{B} into B(X + X) and $\operatorname{Sp}(\hat{a}) = \operatorname{Sp}(\varphi(\hat{a}))$.

The projection

$$\tilde{P} = \begin{pmatrix} P & 0 \\ 0 & P \end{pmatrix}$$

belongs to $\overline{\varphi(\mathcal{B})}$. By Proposition 2.8, for each $\varepsilon > 0$, there exists $a_{\varepsilon} \in \mathcal{A}$ such that $\varphi(\hat{a}_{\varepsilon})$ is a projection and $\|\tilde{P} - \varphi(\hat{a}_{\varepsilon})\| < \varepsilon$. Hence $\pi(a_{\varepsilon})$ is a projection and $\|P - \pi(a_{\varepsilon})\| < \varepsilon$.

3. Structure of $Imp(\delta)$

It is natural to begin the study of $\text{Imp}(\delta)$ with the case when $\delta = 0$. This case is the simplest one but, on the other hand, fundamental because, for any $T, S \in \text{Imp}(\delta)$ with $D(T) \cap D(S) \neq \{0\}$, their difference implements $\delta = 0$ (in general, however, T - S is not defined).

A linear operator T from Y into X intertwines representations π and ρ of \mathcal{A} on X and Y respectively, if its domain D(T) is ρ -invariant and

$$\pi(a)Ty = T\rho(a)y \text{ for } y \in D(T).$$

If π and ρ are irreducible and $T \neq 0$, then

(3.1) $\operatorname{Ker}(T) = 0$, D(T) is dense in Y and TD(T) is dense in X.

The set of all *closed* intertwining operators is denoted by $Int(\pi, \rho)$. Thus $Int(\pi, \rho) = Imp(0)$.

We define the maps $\gamma: \pi(\mathcal{A}) \to \rho(\mathcal{A})$ and $\gamma': \rho(\mathcal{A}) \to \pi(\mathcal{A})$ by

(3.2)
$$\begin{aligned} \gamma(\pi(a)) &= \rho(a), \quad \text{if } \operatorname{Ker}(\pi) \subseteq \operatorname{Ker}(\rho); \\ \gamma'(\rho(a)) &= \pi(a), \quad \text{if } \operatorname{Ker}(\rho) \subseteq \operatorname{Ker}(\pi). \end{aligned}$$

For finite-dimensional irreducible representations, the classic Schur's lemma states that $Int(\pi, \rho)$ is trivial, whenever $Ker(\rho) \neq Ker(\pi)$, and is a onedimensional space otherwise. For \mathcal{F} -representations the situation is similar.

LEMMA 3.1:

- (i) Let π and ρ be irreducible. If Ker(π) ≠ Ker(ρ), then Int(π, ρ) = {0}.
 Moreover, any operator intertwining ρ and π is zero.
- (ii) Let π and ρ be \mathcal{F} -representations. If $\operatorname{Ker}(\pi) = \operatorname{Ker}(\rho)$, then
 - (1) there exists $0 \neq T_{-} \in \text{Int}(\pi, \rho)$ such that any $T \in \text{Int}(\pi, \rho)$ is an extension of λT_{-} for some $\lambda \in \mathbb{C}$;
 - (2) the maps γ and γ' are closable.

Proof: If $0 \neq T$ intertwines π and ρ , then $\pi(a)TD(T) = \{0\}$ for $a \in \text{Ker}(\rho)$, and $T\rho(b)D(T) = \{0\}$ for $b \in \text{Ker}(\pi)$. Taking (3.1) into account, we have $\text{Ker}(\pi) = \text{Ker}(\rho)$. This proves (i).

Suppose that $\operatorname{Ker}(\pi) = \operatorname{Ker}(\rho)$. Then (see Remark 1.6) π and ρ are coherent, so that, by Theorem 1.5, there exists $p \in \mathcal{A}$ such that

$$\pi(p) = g \otimes e, \quad \rho(p) = h \otimes f \quad \text{with } g(e) = h(f) = 1.$$

If, for some $a \in \mathcal{A}$, $\rho(a)f = 0$, then $\rho(ap) = 0$. Hence $\pi(ap) = 0$, and so $\pi(a)e = 0$. This allows us to define a linear operator S on $E_{\rho} := \rho(\mathcal{A})f$ by setting $S\rho(a)f = \pi(a)e$ for $a \in \mathcal{A}$. Obviously S intertwines π and ρ . By Lemma 1.8, S is closable; we denote its closure by T_{-} .

Let $0 \neq R \in \text{Int}(\pi, \rho)$. Then $f \in E_{\rho} \subseteq D(R)$. We have to prove that the restriction of R to E is proportional to S. By (1.1),

$$h \otimes \pi(a)Rf = h \otimes R\rho(a)f = R\rho(a)\rho(p) = \pi(a)\pi(p)R = R^*g \otimes \pi(a)e$$

for $a \in \mathcal{A}$. Hence $\pi(a)Rf = \lambda \pi(a)e$ for some $0 \neq \lambda \in \mathbb{C}$. Therefore $Rf = \lambda e$. From this it follows that $R|E_{\rho} = \lambda S$ because

$$R\rho(a)f = \pi(a)Rf = \lambda\pi(a)e = \lambda S\rho(a)e$$
 for $a \in \mathcal{A}$.

Thus part (ii) (1) is proved. Part (2) follows from (1) and (3.1).

Our next result shows in particular (when $\delta = 0$) that, for reflexive X, Y, there is also $\hat{T} \in \text{Int}(\pi, \rho)$ such that any $T \in \text{Int}(\pi, \rho)$ is proportional to a restriction of \hat{T} to D(T).

THEOREM 3.2: Let π and ρ be \mathcal{F} -representations of \mathcal{A} on reflexive Banach spaces X and Y, and let δ be a bimodule-closable (π, ρ) -derivation.

- (i) If Ker(ρ) ≠ Ker(π), then there are operators T_{min} and T_{max} in Imp(δ) such that T_{min} ⊆ T ⊆ T_{max} for any T ∈ Imp(δ).
- (ii) If Ker(ρ) = Ker(π), then there are closable operators S, F from E_ρ into X such that
 - (1) $0 \neq \overline{F} \in \operatorname{Int}(\pi, \rho) \text{ and } \overline{S} \in \operatorname{Imp}(\delta);$
 - (2) for each $\lambda \in \mathbb{C}$, the operators $S + \lambda F$ are closable and the operators $R_{\lambda} := \overline{S + \lambda F}$ and $G_{\lambda} := ((S + \lambda F)^* | E_{\pi}^*)^*$ belong to $\text{Imp}(\delta)$;
 - (3) for each $T \in \text{Imp}(\delta)$, there exists $\lambda \in \mathbb{C}$ such that $R_{\lambda} \subseteq T \subseteq G_{\lambda}$.

Proof: By Corollary 2.6, there exists $K \in \text{Imp}(\delta)$. By Lemma 1.3, $E_{\rho} \subseteq D(T)$ for each $T \in \text{Imp}(\delta)$. The operator $S := K | E_{\rho}$ implements δ , so, by Lemma 2.1, $\overline{S} \in \text{Imp}(\delta)$. Clearly, the operator $R(T) = T | E_{\rho} - S$ intertwines π and ρ .

If $\operatorname{Ker}(\rho) \neq \operatorname{Ker}(\pi)$, it follows from Lemma 3.1 that R(T) = 0, so T extends S. We have $T^* \subseteq S^*$. Since $D(T^*)$ is π^* -invariant, it follows from Lemma 1.3 that $E_{\pi}^* \subseteq D(T^*)$. Hence $(T^*|E_{\pi}^*)^* = (S^*|E_{\pi}^*)^*$. By Lemma 2.4, $(T^*|E_{\pi}^*)^* \in \operatorname{Imp}(\delta)$. Since $T \subseteq (T^*|E_{\pi}^*)^*$, we have $S \subseteq T \subseteq (S^*|E_{\pi}^*)^*$, and so, to finish the proof of (i), it only remains to set $T_{\min} = \overline{K'}$ and $T_{\max} = ((K')^*|E_{\pi}^*)^*$.

If $\operatorname{Ker}(\rho) = \operatorname{Ker}(\pi)$, then, by Lemma 3.1, there exists $0 \neq T_{-} \in \operatorname{Int}(\pi, \rho)$. Set $F = T_{-}|E_{\rho}$. Then (1) is satisfied. The operators $S + \lambda F$ implement δ for $\lambda \in \mathbb{C}$. Since, by Remark 1.6, π and ρ are coherent representations, it follows from Lemmas 1.8 and 2.1 that $S + \lambda F$ are closable operators and $R_{\lambda} \in \text{Imp}(\delta)$. By Lemma 2.4, G_{λ} also belong to $\text{Imp}(\delta)$.

We obtain from the above discussion and Lemma 3.1 that, for any $T \in \text{Imp}(\delta)$, there exists $t \in \mathbb{C}$ such that $R(T) = T|E_{\rho} - S = tF$. Thus $T|E_{\rho} = R_{\lambda}|E_{\rho}$. Hence

$$R_{\lambda} \subseteq \overline{T|E_{\rho}} \subseteq T \subseteq (T^*|E_{\pi}^*)^* = ((T|E_{\rho})^*|E_{\pi}^*)^* = (R_{\lambda}^*|E_{\pi}^*)^* = G_{\lambda}$$

as required.

The examples below illustrate both possibilities.

Example 3.3: Let R and S be closed densely defined operators from Y into X such that $R \subseteq S$. Consider the algebra

$$\mathcal{A} = \left\{ A = \begin{pmatrix} A_1 & A_{12} \\ 0 & A_2 \end{pmatrix} \in B(X + Y) : A_2 D(S) \subseteq D(R), \\ A_{12}|_{D(S)} = (SA_2 - A_1S)|_{D(S)} \right\},$$

and set $\pi(A) = A_1$, $\rho(A) = A_2$, and $\delta(A) = A_{12}$. Then π and ρ are \mathcal{F} representations of \mathcal{A} , and δ is a bimodule-closed (π, ρ) -derivation. The algebra \mathcal{A} is reflexive, and the lattice of invariant subspaces of \mathcal{A} consists of $\{0\}, X, X + Y$ and all L such that $G(R) \subseteq L \subseteq G(S)$, where G(R) and G(S) are the graphs of R and S. Hence $R = T_{\min}$ is the smallest implementation of δ and $S = T_{\max}$ is
its largest implementation.

Example 3.4 [K]: Let R and T be densely defined, closed operators from Y into X such that:

- (1) $D(R) \cap D(T)$ is dense in Y and $D(R^*) \cap D(T^*)$ is dense in X^* ;
- (2) $\operatorname{Ker}(T) = \{0\}$ and TY is dense in X.

Then, for each $\lambda \in \mathbb{C}$, the operators $R + \lambda T$ and $R^* + \overline{\lambda}T^*$ are closable. Set $R_{\lambda} = \overline{R + \lambda T}$ and $S_{\lambda} = (R^* + \overline{\lambda}T^*)^*$, and consider the operator algebra

$$\mathcal{A} = \left\{ A = \begin{pmatrix} A_1 & A_{12} \\ 0 & A_2 \end{pmatrix} \in B(X + Y) : 1) A_2 D(R) \subseteq D(R), A_2 D(T) \subseteq D(T); \\ 2) A_1 T|_{D(T)} = T A_2|_{D(T)}; \ 3) A_{12}|_{D(R)} = (R A_2 - A_1 R)|_{D(R)} \right\}.$$

Set $\pi(A) = A_1$, $\rho(A) = A_2$ and $\delta(A) = A_{12}$. Then π and ρ are \mathcal{F} -representations of \mathcal{A} and δ is a bimodule-closed (π, ρ) -derivation. It was proved in Theorem 3.5 in [K] that: (1) all operators R_{λ} and S_{λ} belong to $\text{Imp}(\delta)$; and (2) an operator $G \in \text{Imp}(\delta)$ if and only if D(G) is ρ -invariant and $R_{\lambda} \subseteq G \subseteq S_{\lambda}$ for some $\lambda \in \mathbb{C}$.

We will prove now that, if π and ρ are \mathcal{K} -representations (see Definition 2.12), then the structure of $\text{Imp}(\delta)$ in many respects remains the same as for \mathcal{F} -representations.

THEOREM 3.5: Let π and ρ be \mathcal{K} -representations of \mathcal{A} on reflexive Banach spaces X and Y, and let δ be a bimodule-closable (π, ρ) -derivation. Suppose that

(3.3) $\operatorname{Ker}(\pi) = \operatorname{Ker}(\rho)$ and the maps γ, γ' (see (3.2)) are closable.

Then there are $S \in \text{Imp}(\delta)$, $F \in \text{Int}(\pi, \rho)$, and $D \subseteq X^*$ such that

(i) $R_{\lambda} = \overline{S + \lambda F} \in \text{Imp}(\delta)$ and $G_{\lambda} = ((S + \lambda F)^* | D)^* \in \text{Imp}(\delta)$ for each $\lambda \in \mathbb{C}$;

(ii) for any $T \in \text{Imp}(\delta)$, there exists $\lambda \in \mathbb{C}$ such that $R_{\lambda} \subseteq T \subseteq G_{\lambda}$.

Otherwise there are two possibilities:

(1) there is $T_{\min} \in \text{Imp}(\delta)$ such that $T_{\min} \subseteq T$ for any $T \in \text{Imp}(\delta)$;

(2) there is $T_{\max} \in \text{Imp}(\delta)$ such that $T \subseteq T_{\max}$ for any $T \in \text{Imp}(\delta)$.

Proof: It follows from Lemma 2.11 that there exist a unital Banach algebra $\tilde{\mathcal{A}}$ with representations $\tilde{\pi}$ and $\tilde{\rho}$ on X and Y and a bimodule-closed $(\tilde{\pi}, \tilde{\rho})$ -derivation $\tilde{\delta}$ of $\tilde{\mathcal{A}}$ such that $\pi(\mathcal{A}) \subseteq \tilde{\pi}(\tilde{\mathcal{A}}), \ \rho(\mathcal{A}) \subseteq \tilde{\rho}(\tilde{\mathcal{A}}), \ \text{and Imp}(\delta) = \text{Imp}(\tilde{\delta})$. We also have $\text{Int}(\pi, \rho) = \text{Int}(\tilde{\pi}, \tilde{\rho})$. Moreover, (3.3) holds if and only if $\text{Ker}(\tilde{\pi}) = \text{Ker}(\tilde{\rho})$ and the maps $\tilde{\gamma}(\tilde{\pi}(\tilde{a})) = \tilde{\rho}(\tilde{a})$ and $\tilde{\gamma'}(\tilde{\rho}(\tilde{a})) = \tilde{\pi}(\tilde{a})$ are closable for all $\tilde{a} \in \tilde{\mathcal{A}}$. Thus, without loss of generality, we may suppose that δ is bimodule-closed.

By Corollary 2.13, $\operatorname{Imp}(\delta) \neq \emptyset$ and $\operatorname{Ker}(\pi) \cap \operatorname{Ker}(\rho) \neq I_{\pi} \cap I_{\rho}$, so that at least one of π and ρ is an \mathcal{F} -representation.

If (3.3) holds, then, by Lemma 1.7, both π and ρ are \mathcal{F} -representations and the proof follows from Theorem 3.2(ii).

Suppose now that (3.3) does not hold. If both π and ρ are \mathcal{F} -representations, it follows from Theorem 3.2(i) that Imp (δ) satisfies both (1) and (2).

Suppose that ρ is an \mathcal{F} -representation and π is not. Then $\operatorname{Ker}(\pi) = I_{\pi}$. Since

$$\operatorname{Ker}(\pi) \cap \operatorname{Ker}(\rho) \neq I_{\pi} \cap I_{\rho} = \operatorname{Ker}(\pi) \cap I_{\rho},$$

there is $a \in J$ such that $0 \neq \rho(a)$ is a finite-rank operator. Set $J = \text{Ker}(\pi)$. By Lemma 1.4, $\rho' := \rho | J$ is an \mathcal{F} -representation and $E_{\rho} = E_{\rho'}$. It follows from (1.4) that, for each $0 \neq y \in E_{\rho}$,

$$E_{\rho} = E_{\rho'} = \rho'(J)y = \rho(J)y.$$

Vol. 134, 2003

Let $0 \neq K \in \text{Imp}(\delta)$. Then D(K) is ρ -invariant, so that, by Lemma 1.3(i), E_{ρ} is dense in Y and $E_{\rho} \subseteq D(K)$. Set $R = K|E_{\rho}$. Then $\delta(a)|E_{\rho} = R\rho(a)|E_{\rho}$ for each $a \in J$. Therefore, for each $0 \neq y \in E_{\rho}$, we have

$$\delta(b)(\rho(a)y) = \delta(ba)y - \pi(b)\delta(a)y = (R\rho(b) - \pi(b)R)(\rho(a)y),$$

for $a \in J$, $b \in \mathcal{A}$. Since $D(R) = E_{\rho} = \rho(J)y$ is dense in Y, it follows that R implements δ . Hence, by Lemma 2.1(i), $\overline{R} \in \text{Imp}(\delta)$.

For any $T \in \text{Imp}(\delta)$, D(T) is ρ -invariant, so that $E_{\rho} \subseteq D(T)$ and

$$\delta(a)|E_{\rho} = R\rho(a)|E_{\rho} = T\rho(a)|E_{\rho}$$
 for each $a \in J$.

Hence $(R - T)\rho(J)E_{\rho} = \{0\}$, so that $T|E_{\rho} = R$. Setting $T_{\min} = \overline{R}$, we have $T_{\min} \subseteq T$ for each $T \in \text{Imp}(\delta)$.

Similarly, one can show that, if π is an \mathcal{F} -representation and ρ is not, then there is $T_{\max} \in \operatorname{Imp}(\delta)$ such that $T \subseteq T_{\max}$ for each $T \in \operatorname{Imp}(\delta)$.

4. Implementing operators and invariant subspaces

In this section we investigate the structure of norm-closed operator algebras \mathcal{B} on Banach spaces X with only one non-trivial invariant subspace $L \subseteq X$. We impose some compactness conditions on \mathcal{B} without which even the class of transitive operator algebras on X seems to be indescribable.

To clarify the situation, let us consider the case where dim $X < \infty$. In this case, for an appropriate basis in X, the algebra \mathcal{B} either consists of all blockmatrices $\begin{pmatrix} A & C \\ 0 & B \end{pmatrix}$ or of all block-matrices $\begin{pmatrix} A & C \\ 0 & A \end{pmatrix}$ (this is a simple special case of Theorem 4.9 below). In both cases \mathcal{B} contains the space \mathfrak{C}_L of all matrices $\begin{pmatrix} 0 & C \\ 0 & 0 \end{pmatrix}$, and decomposes into the direct sum of \mathfrak{C}_L and the block-diagonal part. It should be noted that \mathfrak{C}_L has a simple, basis-independent description

$$\mathfrak{C}_L = \{ A \in B(X) : AL = \{0\}, AX \subseteq L \},\$$

and it is isomorphic to B(X/L, L). In the general case, we aim to prove that \mathcal{B} has a non-zero intersection with \mathfrak{C}_L , which implies that $\mathcal{B} \cap \mathfrak{C}_L$ is transitive or even weakly dense in \mathfrak{C}_L .

We consider now an arbitrary operator algebra \mathcal{B} on X. Let L be a non-trivial invariant subspace of \mathcal{B} . Denote by φ_L the standard homomorphism from \mathcal{B} into $B(X/L): \varphi_L(A)(x+L) = Ax + L$, and set

$$\mathcal{B}|L = \{A|L : A \in \mathcal{B}\}, \quad \varphi_L(\mathcal{B}) = \{\varphi_L(A) : A \in \mathcal{B}\}.$$

LEMMA 4.1: Let $\mathcal{B}|L$ and $\varphi_L(\mathcal{B})$ be transitive algebras, and suppose that at least one of them contains a compact operator. If $\mathcal{B} \cap \mathfrak{C}_L \neq \{0\}$, then $\mathcal{B} \cap \mathfrak{C}_L$ is weakly dense in \mathfrak{C}_L .

Proof: Set $\hat{X} = X/L$. For $T \in \mathfrak{C}_L$, define an operator \tilde{T} in $B(\hat{X}, L)$: $\tilde{T}(x+L) = Tx$, for $x \in X$. Then $T \to \tilde{T}$ is an isometric, WOT-bicontinuous map from \mathfrak{C}_L onto $B(\hat{X}, L)$. The image E of $\mathcal{B} \cap \mathfrak{C}_L$ in $B(\hat{X}, L)$ is a left $\mathcal{B}|L$ - and a right $\varphi_L(\mathcal{B})$ -module. Hence \overline{E}^{wot} is a left $\overline{\mathcal{B}}|L^{wot}$ - and a right $\overline{\varphi_L(\mathcal{B})}^{wot}$ -module. Since the algebras $\mathcal{B}|L$ and $\varphi_L(\mathcal{B})$ are transitive, and at least one of them contains a compact operator, it follows from Theorem 8.23 in [RR] that either $\overline{\mathcal{B}}|L^{wot} = B(L)$, or $\overline{\varphi_L(\mathcal{B})}^{wot} = B(\hat{X})$. Hence \overline{E}^{wot} contains a rank-one operator, say $f \otimes x$, where $x \in L$, $f \in \hat{X}^*$ and, therefore, all rank-one operators $(A|L)(f \otimes x)\varphi_L(B) = \varphi_L(B)^* f \otimes Ax$, for $A, B \in \mathcal{B}$, belong to \overline{E}^{wot} . Since the algebras $\mathcal{B}|L$ and $\varphi_L(\mathcal{B})$ are transitive, \overline{E}^{wot} contains all rank-one operators. Thus $\overline{E}^{wot} = B(\hat{X}, L)$, so that $\mathcal{B} \cap \mathfrak{C}_L$ is weakly dense in \mathfrak{C}_L .

Assume now that the invariant subspace L has a closed complement M in X. Let Q be the projection on M along L and consider the representations $\pi: A \to A|L$ and $\rho: A \to QA|M$ of \mathcal{B} on L and M. Then $\delta: A \to (1-Q)A|M$ is a (π, ρ) -derivation of \mathcal{B} .

We denote by $\mathcal{L}(\delta)$ the set of all invariant subspaces of \mathcal{B} apart from $\{0\}$, Land X. Let F be an operator from M into L with domain $D(F) \subseteq M$. Its graph $G(F) = \{(Fy, y) : y \in D(F)\}$ is a subspace in X; it is closed if and only if F is closed.

LEMMA 4.2: If π and ρ are irreducible representations, then $F \leftrightarrow G(F)$ is a bijection of Imp (δ) onto $\mathcal{L}(\delta)$.

Proof: By (0.1), $G(F) \in \mathcal{L}(\delta)$ if $F \in \text{Imp}(\delta)$. Let $K \in \mathcal{L}(\delta)$. Since π is irreducible, either $L \subset K$, or $L \cap K = \{0\}$. Since ρ is irreducible, in the first case K = X and in the second case there is a closed, densely defined operator F from M into L such that K = G(F). Since G(F) is invariant for all operators from \mathcal{B} , F implements δ .

Note that under the isomorphism between M and X/L the algebra $\mathcal{B}_M = \rho(\mathcal{B}) = \{QA|M : A \in \mathcal{B}\}$ corresponds to $\varphi_L(\mathcal{B})$.

THEOREM 4.3: Let \mathcal{B} be a norm-closed algebra of operators on a reflexive Banach space X. Suppose that \mathcal{B} has only one non-trivial invariant subspace L and that L has a closed complement M in X. If either

(i) the closure of the "block-diagonal part" $\{A(1-Q) + QAQ : A \in B\}$ of \mathcal{B} contains a non-zero compact operator,

or

(ii) the algebras $\mathcal{B}|L$ and \mathcal{B}_M contain non-zero compact operators, then $\mathcal{B} \cap \mathfrak{C}_L$ is weakly dense in \mathfrak{C}_L .

Proof: Since L is the only non-trivial invariant subspace of \mathcal{B} , π and ρ are irreducible. Assume that $\mathcal{B} \cap \mathfrak{C}_L = \{0\}$. Then δ is bimodule-closable. Since L and M are reflexive, it follows from Theorem 2.0 and Corollary 2.13 that $\operatorname{Imp}(\delta) \neq \emptyset$. By Lemma 4.2, $\mathcal{L}(\delta) \neq \emptyset$, so that \mathcal{B} has another non-trivial invariant subspace apart from L. This contradiction shows that $\mathcal{B} \cap \mathfrak{C}_L \neq \{0\}$.

By Theorem 2.10 and Corollary 2.13, at least one of the representations π and ρ is an \mathcal{F} -representation. Hence the weak density of $\mathcal{B} \cap \mathfrak{C}_L$ in \mathfrak{C}_L follows from Lemma 4.1.

Recall that by $\mathcal{K}(X)$ we denote the ideal of all compact operators on X. For any subspace L in X, the space

$$L^{\perp} = \{h \in X^* : h(y) = 0 \text{ for all } y \in L\}$$

in X^* is closed in $\sigma(X^*, X)$ -topology. To study the case where L has no closed complement in X and X is non-reflexive, we consider the following pivotal result.

PROPOSITION 4.4: Let \mathcal{B} be a norm-closed subalgebra of B(X) with only one non-trivial invariant subspace L, and suppose that $\mathcal{B} \cap \mathcal{K}(X) \neq \{0\}$.

- (i) If B∩K(X) does not lie in C_L, then there is a B*-invariant, closed subspace
 L ≠ {0} in X* such that B contains all operators f ⊗ x, where f ∈ L,
 x ∈ L.
- (ii) If $\varphi_L(\mathcal{B} \cap \mathcal{K}(X)) \neq 0$, then, in addition, $\mathfrak{L} \cap L^{\perp} \neq \{0\}$.

Proof: Since L is the only non-trivial invariant subspace of \mathcal{B} , the algebras $\mathcal{B}|L$ and $\varphi_L(\mathcal{B})$ are transitive. Let us prove first that \mathcal{B} contains a compact operator T such that $1 \in \operatorname{Sp}(T)$. If $K \in \mathcal{B} \cap \mathcal{K}(X)$ and $K|L \neq 0$, then, since the algebra $\mathcal{B}|L$ is transitive on L, it follows from [L] (see also [RR]) that there exists $A \in \mathcal{B}$ with $1 \in \operatorname{Sp}(KA|L)$. The operator T := KA is compact and $1 \in \operatorname{Sp}(T)$. Suppose that $\varphi_L(K) \neq 0$. Since $\varphi_L(K)$ is compact and $\varphi_L(\mathcal{B})$ is a transitive algebra on X/L, we have similarly from [L] that there is $A \in \mathcal{B}$ with

$$1 \in \operatorname{Sp}(\varphi_L(K)\varphi_L(A)) = \operatorname{Sp}(\varphi_L(KA)) \subseteq \operatorname{Sp}(KA).$$

Thus again it suffices to set T = KA.

Let P = Q(T) (see (2.3)) be the Riesz projection on the spectral subspace Zof T corresponding to $\{1\}$. Then dim $Z < \infty$. Since \mathcal{B} is norm-closed, $P \in \mathcal{B}$. Set $Z_L = Z \cap L$. Since $PL \subseteq L$, we have $PL = Z_L$. The algebra $P\mathcal{B}P|Z$ has no invariant subspaces apart from $\{0\}$, Z_L , and Z. Indeed, since L is the only non-trivial invariant closed subspace of \mathcal{B} ,

(1) if $0 \neq z \in Z_L$, then $\mathcal{B}z$ is dense in L, so that $P\mathcal{B}Pz = Z_L$;

(2) if $0 \neq z \in Z$ and $z \notin Z_L$, then $\mathcal{B}z$ is dense in X, so that $P\mathcal{B}Pz = Z$; and the claim follows.

If $Z_L = \{0\}$ or $Z_L = Z$, the algebra $P\mathcal{B}P|Z$ is transitive and, by the Burnside Theorem, $P\mathcal{B}P|Z = B(Z)$. Hence it contains a rank-one operator $g \otimes z$. If $\{0\} \neq Z_L \neq Z$, the same conclusion follows from Theorem 4.3 applied to the algebra $P\mathcal{B}P|Z$.

Since the set $\{x \in X : g \otimes x \in B\}$ is a closed \mathcal{B} -invariant subspace of X, it contains L. Similarly, the set $\mathfrak{L} = \{f \in X^* : f \otimes x \in \mathcal{B} \text{ for all } x \in L\}$ is a non-zero, closed subspace of X^* . This proves (i).

Assume now that $\varphi_L(\mathcal{B} \cap \mathcal{K}(X)) \neq 0$. As above, there is a compact operator Tin \mathcal{B} with $1 \in \operatorname{Sp}(\varphi_L(T)) \subseteq \operatorname{Sp}(T)$. Since φ_L is bounded, it follows from (2.3) that $\varphi_L(Q(T)) = Q(\varphi_L(T)) \neq 0$ is the Riesz projection onto the spectral subspace of $\varphi_L(T)$ corresponding to $\{1\}$. Hence Z does not lie in L, so $Z_L \neq Z$.

Suppose that $Z_L = \{0\}$ and $0 \neq g \otimes z \in P\mathcal{B}P|Z$. Then $z \in Z$. For $x \in L$, $(g \otimes z)x = g(x)z$. Since $z \notin L$ and L is invariant for $g \otimes z$, we have $g \in L^{\perp}$. Thus $\mathfrak{L} \cap L^{\perp} \neq \{0\}$.

Let $\{0\} \neq Z_L \neq Z$. Applying Theorem 4.3 to $P\mathcal{B}P|Z$, we obtain that there are $z \in Z_L$ and $g \in X^*$ such that $g \otimes z \in P\mathcal{B}P|Z$ and g(x) = 0 for $x \in Z_L$. Since $g \otimes z = (g \otimes z)P = P^*g \otimes z$, we have $g = P^*g$. Since $PL = Z_L$, we have, for $y \in L$,

$$g(y) = P^*g(y) = g(Py) = 0.$$

Thus $g \in L^{\perp}$, so that $\mathfrak{L} \cap L^{\perp} \neq \{0\}$.

For each subspace \mathfrak{M} in X^* , we denote by $\mathfrak{M} \otimes L$ the linear span of all rank-one operators $f \otimes x$, $f \in \mathfrak{M}$, $x \in L$. It is evident that $L^{\perp} \otimes L \subseteq \mathfrak{C}_L$.

THEOREM 4.5: Let \mathcal{B} be a norm-closed subalgebra of B(X) which contains a non-zero compact operator, and suppose that \mathcal{B} has only one non-trivial invariant subspace L.

(i) If the algebra B is either (1) weakly closed, or (2) φ_L(B ∩ K(X)) ≠ {0}, or
(3) X is reflexive, then

$$\mathcal{B} \cap \mathfrak{C}_L \neq \{0\}.$$

(ii) If either (1) $\varphi_L(\mathcal{B} \cap \mathcal{K}(X)) \neq \{0\}$ (in particular, if $\mathcal{B} \subseteq \mathcal{K}(X)$), or (2) $(\mathcal{B} \cap \mathcal{K}(X))|L \neq \{0\}$ and X is reflexive,

then $\mathcal{B} \cap \mathfrak{C}_L$ is weakly dense in \mathfrak{C}_L .

(iii) If \mathcal{B} is weakly closed and $\mathcal{B} \cap \mathcal{K}(X)$ does not lie in \mathfrak{C}_L , then $\mathfrak{C}_L \subset \mathcal{B}$.

Proof: Part (i) follows from (ii) and (iii). Since L is the only non-trivial invariant subspace of \mathcal{B} , the algebras $\mathcal{B}|L$ and $\varphi_L(\mathcal{B})$ are transitive. Suppose that $\mathcal{B}\cap\mathcal{K}(X)$ is not contained in \mathfrak{C}_L . Then at least one of the algebras $\mathcal{B}|L$ and $\varphi_L(\mathcal{B})$ contains a non-zero compact operator, and it follows from Proposition 4.4 that there is a \mathcal{B}^* -invariant, norm closed subspace $\mathfrak{L} \neq \{0\}$ in X^* such that $\mathfrak{L} \otimes L \subseteq \mathcal{B}$.

Let $\varphi_L(\mathcal{B} \cap \mathcal{K}(X)) \neq \{0\}$. By Proposition 4.4(ii), $\mathfrak{L} \cap L^{\perp} \neq \{0\}$. Therefore $\{0\} \neq \mathcal{B} \cap (L^{\perp} \otimes L) \subseteq \mathcal{B} \cap \mathfrak{C}_L$ and part (ii) (1) follows from Lemma 4.1.

Let $\mathcal{B} \cap \mathcal{K}(X)$ contain an operator K such that $K | L \neq 0$. If X is reflexive, the only \mathcal{B}^* -invariant subspaces of X^* are $\{0\}$, L^{\perp} , and X^* . Since $\mathfrak{L} \neq \{0\}$, it is either L or X^* . Thus $L^{\perp} \otimes L \subseteq \mathfrak{L} \otimes L \subseteq \mathcal{B} \cap \mathfrak{C}_L$ and (ii) (2) follows from Lemma 4.1.

Let \mathcal{B} be weakly closed and $\overline{\mathfrak{L}}^w$ be the closure of \mathfrak{L} in the $\sigma(X^*, X)$ -topology. Then $\overline{\mathfrak{L}}^w \otimes L \subseteq \mathcal{B}$. The space $\overline{\mathfrak{L}}^w$ is \mathcal{B}^* -invariant and, by the bipolar theorem, there is a norm closed subspace M in X such that $\overline{\mathfrak{L}}^w = M^{\perp}$. The space M is \mathcal{B} -invariant. Since $\mathfrak{L} \neq \{0\}$, M is either $\{0\}$ or L. In both cases $L^{\perp} \subseteq \overline{\mathfrak{L}}^w$, so $L^{\perp} \otimes L \subseteq \mathcal{B}$. Applying Lemma 4.1, we complete the proof.

The reflexivity of X in Theorem 4.5(i) (3) and (ii) (2) is essential as the following example shows.

Example 4.6: Let H be a Hilbert space, X = B(H) and $L = \mathcal{K}(H)$ be the ideal of all compact operators on H. Then X is the second dual of L. Let B(L) be the algebra of all bounded operators on L. Set $\mathcal{B} = \{A^{**} : A \in B(L)\}$.

Then L is \mathcal{B} -invariant, $A^{**}|L = A$ for any $A \in B(L)$, and $||A^{**}|| = ||A||$. Hence \mathcal{B} is a norm-closed subalgebra of B(X) and

$$\mathcal{B} \cap \mathfrak{C}_L = \{0\}.$$

If $A \in B(L)$ is a rank-one operator, then A^{**} is also a rank-one operator.

Let us show that L is the only non-trivial invariant subspace of \mathcal{B} . For $B \in B(H)$, the operators λ_B, μ_B of left and right multiplication by B belong to B(X), preserve L and $\lambda_B = (\lambda_B | L)^{**}, \ \mu_B = (\mu_B | L)^{**}$. Hence $\lambda_B, \mu_B \in \mathcal{B}$ and, by Calkin's Theorem, L is the only non-trivial invariant subspace of \mathcal{B} .

Remark 4.7: The above construction can be considered for any non-reflexive Banach space L: the algebra $\mathcal{B} = B(L)^{**}$ on L^{**} always contains non-zero compact operators and $\mathcal{B} \cap \mathfrak{C}_L = \{0\}$. However, for some L, \mathcal{B} has other non-trivial invariant subspaces apart from L. An example of such a space is $L = c_0 + l^1$.

We consider now the case when an operator algebra \mathcal{B} consists of compact operators only.

COROLLARY 4.8: Let \mathcal{B} be an algebra of compact operators on X with only one non-trivial invariant space L. Then:

- (i) $\bar{\mathcal{B}}^{wot}$ contains \mathfrak{C}_L ;
- (ii) if, in addition, X/L is reflexive and L has the approximation property, then
 𝔅_L ∩ 𝔅(X) ⊆ 𝔅.

Proof: Part (i) follows from Theorem 4.5(ii) (1).

By Proposition 4.4(ii), \mathcal{B} contains $\mathfrak{L}_1 \otimes L$, where $\mathfrak{L}_1 = \mathfrak{L} \cap L^{\perp}$ is a nonzero closed \mathcal{B}^* -invariant subspace in L^{\perp} . Since L^{\perp} is isomorphic to $(X/L)^*$, it is reflexive, so \mathfrak{L}_1 is closed in the $\sigma(X^*, X)$ -topology. By the bipolar theorem, there is a closed \mathcal{B} -invariant subspace M in X such that $\mathfrak{L}_1 = M^{\perp}$. Since L is the only non-trivial \mathcal{B} -invariant subspace, $\mathfrak{L}_1 = L^{\perp}$. Thus $L^{\perp} \otimes L = \mathfrak{C}_L \cap \mathcal{F}(X) \subseteq \mathcal{B}$.

Under the isomorphism of \mathfrak{C}_L and B(X/L, L), $\mathfrak{C}_L \cap \mathcal{F}(X)$ and $\mathfrak{C}_L \cap \mathcal{K}(X)$ correspond to $\mathcal{F}(X/L, L)$ and $\mathcal{K}(X/L, L)$, respectively. It follows from Grothendieck's theorem that the approximation property of L implies the density of $\mathcal{F}(Y, L)$ in $\mathcal{K}(Y, L)$, for any Banach space Y. Therefore, since \mathcal{B} is norm-closed, $\mathfrak{C}_L \cap \mathcal{K}(X) \subseteq \mathcal{B}$.

For the case where X = H is a Hilbert space, Corollary 4.8(ii) allows us to obtain a description of norm-closed operator algebras of compact operators with only one non-trivial invariant subspace. We shall use the symbol L^{\perp} for the orthogonal complement of L in H.

THEOREM 4.9: If a norm-closed algebra \mathcal{B} of compact operators on a Hilbert space H has only one non-trivial invariant subspace L, then

$$B = \mathfrak{D} + (\mathfrak{C}_L \cap \mathcal{K}(H)),$$

where the algebra \mathfrak{D} consists of compact operators of the form $A = \begin{pmatrix} A_1 & 0 \\ 0 & A_2 \end{pmatrix}$ with respect to the decomposition $H = L \oplus L^{\perp}$ and either

(i) \mathfrak{D} is isomorphic to $\mathcal{K}(L) \oplus \mathcal{K}(L^{\perp})$;

or

(ii) there exists a closed, densely defined, injective operator T from L[⊥] into L such that Im(T) is dense in L,

$$A_2D(T) \subseteq D(T)$$
 and $A_1T = TA_2$ for $A \in \mathfrak{D}$.

Proof: Clearly, in the block-matrix form \mathfrak{C}_L coincides with the set of all upper triangular matrices $\begin{pmatrix} 0 & C \\ 0 & 0 \end{pmatrix}$. By Corollary 4.8(ii), \mathcal{B} contains the set $\mathfrak{N} = \mathfrak{C}_L \cap \mathcal{K}(H)$ of all compact operators in \mathfrak{C}_L . Hence $\mathcal{B} = \mathfrak{D} + \mathfrak{N}$, where \mathfrak{D} is a norm closed algebra which consists of block-diagonal operators.

Let Q be the projection on L^{\perp} and consider the representations $\pi: A \to A|L$ and $\rho: A \to QA|L^{\perp}$ of \mathcal{B} on L and L^{\perp} . Then $\pi(\mathcal{B}) = \pi(\mathfrak{D}) \subseteq \mathcal{K}(L), \ \rho(\mathcal{B}) = \rho(\mathfrak{D}) \subseteq \mathcal{K}(L^{\perp}).$

Suppose that $J_{\rho} = \operatorname{Ker}(\rho | \mathfrak{D}) \neq \{0\}$. Since $\pi(\mathfrak{D})$ is transitive on L, $\pi(J_{\rho})$ is a transitive, norm-closed subalgebra of $\mathcal{K}(L)$. Hence $\pi(J_{\rho}) = \mathcal{K}(L)$ and it follows that \mathfrak{D} is isomorphic to $\mathcal{K}(L) \oplus \mathcal{K}(L^{\perp})$. The same is true if $J_{\pi} = \operatorname{Ker}(\pi | \mathfrak{D}) \neq \{0\}$.

Suppose now that $J_{\pi} = J_{\rho} = 0$. Since \mathfrak{D} is a closed algebra of compact operators, $\pi | \mathfrak{D}$ and $\rho | \mathfrak{D}$ are \mathcal{F} -representations of \mathfrak{D} and part (ii) follows from Lemma 3.1(ii).

References

- [A] B. Aupetit, A Primer on Spectral Theory, Springer-Verlag, Berlin-Heidelberg-New York, 1991.
- [B] B. A. Barnes, Density theorem for algebras of operators and annihilator Banach algebras, Michigan Mathematical Journal 19 (1972), 149–155.
- [BR] O. Bratteli and D. W. Robinson, Unbounded derivations of C*-algebras, Communications in Mathematical Physics 42 (1975), 253–268.
- [GK] I. Ts. Gohberg and M. G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators in Hilbert Spaces, Nauka, Moscow, 1965.
- [K] E. Kissin, On some reflexive operator algebras constructed from two sets of closed operators and from a set of reflexive operator algebras, Pacific Journal of Mathematics 126 (1987), 125–143.

28 E. KISSIN, V. I. LOMONOSOV AND V. S. SHULMAN Isr. J. Math.

- [L] V. I. Lomonosov, On invariant subspaces of families of operators commuting with a completely continuous operator, Funktsional. Analisis i Prilozen. 7 (1973), 55– 56 (Russian); English transl.: Functional Analysis and its Applications 7 (1973), 213–214.
- [RR] H. Radjavi and P. Rosenthal, Invariant Subspaces, Springer-Verlag, Berlin-Heidelberg-New York, 1973.
- [S] S. Sakai, Operator Algebras in Dynamical Systems, Cambridge University Press, Cambridge, 1991.