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ABSTRACT

The paper studies operator implementations of derivations of algebras.
Let 7 and ¢ be irreducible representations of an algebra A on Banach
spaces X and Y. A linear map §: A — B(Y, X) is a (w, p)-derivation if
d(ab) = m(a)d(b)+d{a)p(b). It is bimodule-closable if m(a,) — 0, p(an) =
0 and é(an) = B imply B = 0. A closed operator F from Y into X
implements & if Fp(a) — m(a)F C §(a), for a € A. It is shown that if
X,Y are reflexive and either the closure of the algebra {n(a) + p(a) :
a € A} or both algebras w(A), p(A) contain compact operators, then
the set Imp(d) of all implementations is not empty for any bimodule-
closable (r, p)-derivation &, and either contains a minimal operator, or a
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maximal operator, or two families of operators Ry C G, A € C, such
that Ry C T C G, for each T € Imp(d) and some .

These results are applied to the study of norm-closed operator alge-
bras B on Banach spaces X with only one invariant subspace L. It is
proved that, if B contains compact operators, X is reflexive and L has
approximation property, then B contains all compact “corner” operators:
BX C L and BL =0. If L has a closed complement, the same is true if
the closure of the block-diagonal part of B contains compact operators.
If X is non-reflexive, B may have no “corner” operators. If, however, B
consists of compact operators then its weak closure contains all “corner”
operators. A description is given of algebras of compact operators on
Hilbert spaces with only one invariant subspace.

Introduction

Let X and Y be Banach spaces. We denote by B(X) the algebra of all bounded
operators on X and by B(Y, X) the space of all bounded operators from Y into
X. Let m and p be representations of an algebra .4 on X and Y, respectively. A
(m, p)-derivation is a linear map 4 from A into B(Y, X) satisfying the rule:

d(ab) = m(a)d(b) + 6(a)p(b).

Clearly, any (=, p)-derivation is a usual, spatial derivation from A into the
A-bimodule B(Y,X). A (m, p)-derivation is called bimodule-closable if

n(an) — 0,p(an) = 0 and é(a,) — B € B(Y, X) imply that B = 0.

Throughout the paper the convergence is in the norm topology unless another
topology is indicated.
Each operator F' in B(Y, X) defines a bimodule-closable (7, p)-derivation dp
of A:
dr(a) =w(a)F — Fp(a) foralla€ A.

More generally, a densely defined operator F' from Y to X implements a (7, p)-
derivation ¢ of A if its domain D(F) is p-invariant and if

(0.1) 8(a)|p(ry = (Fp(a) — w(a)F)|pry for each a € A.

We denote by Imp(§) the set of all closed, densely-defined operators which im-
plement 4. It is not difficult to see that any implemented derivation must be
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bimodule-closable; we are interested in the conditions under which the converse
is true.

The question “which unbounded derivations of an algebra .A are implemented
by densely defined operators” is of a cohomological nature. Its “bounded” version
— “which derivations of A are implemented by bounded operators” — is the
problem of the description of the first cohomology group of A with coefficients
in the bimodule B(Y, X).

Bratteli and Robinson [BR] studied the case where X =Y is a Hilbert space
and ¢4 is a closable x-derivation of a x-algebra A in B(X). They proved that, if
the closure of A contains the ideal of all compact operators, then Imp(d) # @. In
Section 2 we shall extend their result to bimodule-closable (7, p)-derivations of
arbitrary algebras provided that the Banach spaces X,Y are reflexive, m, p are
irreducible, and either the closure of the algebra {n(a) + p(a) : a € A} or both
algebras 7(A) and p(A) contain non-zero compact operators.

Earlier in Section 1 we shall consider various properties of F-representations
— irreducible, infinite-dimensional representations which contain non-zero finite-
rank operators in their images. Their theory appears to be surprisingly close to
the theory of finite-dimensional, irreducible representations. For example, as
in the classic Schur lemma, the space of all intertwining operators for two F-
representations is either trivial or “one-dimensional”.

Section 3 describes the structure of the set Imp(d) when =, p are irreducible
representations whose images contain non-zero compact operators. It is proved
that Imp(d) either contains a minimal operator such that all T € Imp(d) extend
it, or it contains a mazimal operator which extends every T € Imp(d), or it
contains two families of operator {Ry}rec, {Ga}acc, Ra € G., such that any
T € Imp(d) satisfies Ry C T C G, for some A € C.

The most natural class of (m, p)-derivations consists of derivations of sub-
algebras A of B(X) into B(X), where 7 and p are the identity representations.
Another class is constituted by "corner” derivations of A: let L be a closed A-
invariant subspace of X, M be a closed complement of L in X, and Q be the
projection on M along L. Then m: A — A|L, p: A — QA|M, A € A, are repre-
sentations of 4 and 6: A — (1 — Q)A|M is a (w, p)-derivation of A. This allows
us to apply the above results about derivations to the study of the structure of
operator algebras with only one non-trivial invariant subspace.

Let B be a norm-closed algebra of operators on a Banach space X', and suppose
that B contains a non-zero compact operator. If X is a reflexive space with the
approximation property and B has a trivial invariant subspace lattice ({0}, X),
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then (see [L] and also [RR]) B contains all compact operators on X. It is natural
to ask what can be said about B if it only has one non-trivial invariant subspace L.
In Section 4 we shall establish that, if X is reflexive and L has the approximation
property, then B must contain all compact operators T such that TX C L and
TL = 0 — compact “corner” operators. If L has a closed complement, the same
is true under a weaker condition: the closure of the “block-diagonal part” of B
contains a non-zero compact operator. If, however, X is non-reflexive, then B
may have no non-trivial operators vanishing on L.

It is also proved, without the assumption of reflexivity of X, that if B consists
of compact operators then its weak closure contains all “corner” operators. We
finish Section 4 by a description of algebras of compact operators on Hilbert
spaces with only one non-trivial invariant subspace.

ACKNOWLEDGEMENT: The authors are extremely grateful to the referee for the
valuable comments and suggestions for improvement.

1. Properties of F-representations

We denote by F(X) the algebra of all finite-rank operators on a Banach space X,
and by X* the dual space of X. For x € X and g € X*, the rank-one operator
g ® x acts on X by

g®z(z) =g(z)x for z € X.

For each operator A on X, we denote by D(A) its domain and by A* the conjugate
operator on X*. If A is closable, that is, £, — 0 and Ax,, — x imply that x = 0,
then we denote by A its closure. If x € D(A) and g € D(A*), then

(1.1) Algozry=g® Az and (9@ x)A=A"g®z.
Hence
(1.2) (g@z)(h®y) =g(y)(h®z), so that (g©z)*=g(r)(g® 2).

If g(z) # 0 then g ® tz is a rank-one projection for some ¢ € C.

Let I be a subalgebra of B(X). Then U is transitive if its lattice of closed
invariant subspaces consists only of {0} and X. For each manifold L in X, we
denote by UL the linear span of {Az: A€ U,z € L}. Set

Ur =UNF(X).

If U is transitive and Uz # {0}, then U is also transitive on X and contains a
rank-one projection ([B]). We need the following refinement of this result.
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LEMMA 1.1: Let U be a transitive subalgebra of B(X). If Ur # {0}, then the
ideal J generated by all rank-one projections in U coincides with Ur.

Proof: We prove the lemma by induction on the rank r(T) of operators T. If
r(T) = 0, then T = 0 € J. Assume that J contains all operators with rank
smaller than k, and let T € Ur with r(T) = k.

Let x = Ty # 0. There is S € Ur with Sz # 0. Let R be a rank-one operator
with RSz = y, and set P = TRS. Then Px = z. Since Ur is transitive, it
is weakly dense in B(X) (see Theorem 8.23 in [RR]), so that TUxS is weakly
dense in TB(X)S. Since TB(X)S is finite-dimensional, TB(X)S = TUxS C Ur.
Hence P € Ur. Since 7(P) =1 and Pz = x, P is a rank-one projection, so that
PeJ. Wehave T = PT+ (1 - P)T and PT € J. Since r((1 — P)T) < r(T), we
have (1 - P)T € J. Hence T € J. |

Definition 1.2: An irreducible representation 7 of an algebra A on X is called
an F-representation if 7(A) N F(X) # {0}.

For a representation 7 of 4 on X, we set
(1.3) In={a€ A:n(a) € F(X)}.

Then I, is an ideal of A and Ker(n) C I;.. If 7 is an F-representation of A, then
the operator algebra U = m(.A) is transitive, Ker(r) C I; and

Us = n(A) N F(X) = n(I,) # {0}.
Consider the subspaces
E,=n(I;)X and E;==n(l;)*X".

LEMMA 1.3: Let m be an F-representation of an algebra A on X. Then
(i) E, is dense in X and contained in any non-zero w-invariant subspace of X,
(ii) Ex # {0} is contained in any non-zero w*-invariant subspace of X*.

Proof:  The subspace E is non-zero and w-invariant. Hence it is dense in X.
If L is a non-zero, m-invariant subspace of X, it is dense in X. Hence, for any
a € A, w(a)L is dense in w(a)X. If a € I, then dimn(a)X < oo, so that
m(a)X = m(a)L C L. Hence E; C L. Part (i) is proved.

Set R = {r € A : n(r) is a rank-one operator}. It follows from Lemma 1.1
that w([;) coincides with the linear manifold generated by all operators = (r)
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with 7 € R. Let L be a non-zero m*-invariant subspace of X*. To prove (ii) it
suffices to show that =(r)*X* C L for each r € R.

Let r € R and n{r) = g ®x, where 0 # z € X and 0 # g € X*. Then
7(r)* = z® g and w(r)*X* = Cg. For each a € A4, ar € R and w(ar) =
m(a)r(r) = g @ n(a)r. Let 0 # h € L. Then n(ar)*h = (w(a)z ® g)h =
h(m(a))g € L. Since 7 is irreducible, there exists a € A such that h(7(a)) # 0.
Hence 7(r)*X* =Cg C L. |

It follows from Lemma 1.3 that
(1.4) E,=n(l;)x=a(A)y and E;=n(I.)"f=n(A)g,
forany0 £z e X and0#y€ E,any0# f€e X*and 0# g€ E}.

LEMMA 1.4: Let m be a representation of A, and let J be an ideal of A not
contained in Ker(r).

(i) If = is irreducible, then the representation o = =|J is irreducible.

(ii) If 7 is an F-representation, then ¢ an F-representation and E, = E,..

Proof: The representation o irreducible, since, for each x € X, we have

7(J)z 2 r(A)r(J)r(A)z = n(A)n(J)X = X.

The representation 7|, is irreducible, whence n(J)n(I;})X = n(J)X = X. Since
m(J)n(lz) € w(J) N F(X), we have n(J) N F(X) # {0}. Hence o is an F-
representation.

Since I, = JNI,, we have £, C E,. On the other hand E, is m-invariant
and, by Lemma 1.3(i), E, C E,. Thus E, = E;,. ]

If 7 is an F-representation of 4, then there is p € A such that 7(p) is a rank-
one projection. For later investigations it is important to know the conditions
when, for two F-representations m, p of A, there exists an element p in 4 such
that both 7(p) and p(p) are rank-one projections.

We call F-representations «, p coherent if

(L5) p(I) # {0} and n(I,) # {0},

THEOREM 1.5: Let 7 and p be F-representations of A on X and Y, respectively.
There exists p € A such that w(p) and p(p) are rank-one projections if and only
if m and p are coherent.

Proof: Let  and p be coherent F-representations. Without loss of generality, we
suppose that Ker(m) NKer(p) = {0}. If 7, p are not faithful, then, by Lemma 1.4,
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7| Ker(p), p| Ker(r) are F-representations. Thus there are a € Ker(n), b € Ker(p)
such that 7(b) and r(a) are rank-one projections. It remains to set p = a + b.

Assume now that 7 is faithful. There is a € A such that p(a) is a rank-one
projection. Clearly, 7w(a) # 0. There is also b € A such that p(b) # 0 and =({b)
has rank one. Indeed, m(Ker(p)) is an ideal of w(A). If it contains all rank one
projections in 7(.A), then, by Lemma 1.1, it contains 7 (A)NF(X) = =(I,). Since
w is faithful, I, C Ker(p), which contradicts (1.5).

Clearly, r(m(axb)) < 1 and r(p(azb)) < 1 for each z € A. Since p(A) is
transitive, there is x € A with p(azb) # 0. Since 7 is faithful, 7(axb) # 0. Thus
we have found an element ¢ € A such that 7(c) and p(c) are rank-one operators,
say

mlc)=g©eand p{c)=h® f, whereee X, ge X*,feYandheY™

Set Ay = {a € A: g(n(a)e) =0}, Ao = {a € A: h(p(a)f) = 0}. Then A; are
proper subspaces of A, so that A # A; U A,. Hence there is b € A such that
g(m(b)e) # 0 and h(p(b)f) # 0. Taking (1.1) and (1.2) into account, we have that
7(bc) = g © w(b)e and p(bc) = h @ p(b)f are non-nilpotent rank-one operators.
Hence there is 0 # ¢ € C such that the element p = tbe satisfies 7(p)? = =(p).
Since 7 is faithful, p? = p, whence p(p) is also a rank-one projection.

The converse is obvious. ]

Remark 1.6: The following conditions are sufficient for F-representations =, p
to be coherent:

(a) Ker(mw) = Ker(p);

(b) Ker(m) is not contained in Ker(p) and Ker(p) is not contained in Ker(r).

Indeed, if Ker(m) = Ker(p) and n(I,) = 0, then p(I,) = 0, which is impossible
for an F-representation. Sufficiency of (b) was established in Theorem 1.5, but
it is easy to prove it directly: if m,p are not coherent, say m(I,) = 0, then
Ker(p) C Ker(w). |

LEMMA 1.7: Let 7 be an F-representation, and suppose that p is irreducible. If
Ker(p) = Ker(x), then p is also an F-representation.

Proof:  'Without loss of generality, we may assume that both = and p are faithful.
Let p € A be such that #(p) is a rank-one projection. Then w(p.Ap) is one-
dimensional. Since 7, p are faithful, the same is true for pAp and p? = p, so p(p)
is a projection. Since p(A) is transitive, p(p)Az = p(pAp)z is dense in p(p)X
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for each x € p(p)X. Hence p(p) has rank one, so that p is an F-representation.
1

LEMMA 1.8: Let © and p be coherent F-representations of A on X and Y,
respectively, and let § be a (w, p)-derivation of A. Then any densely defined
operator T which implements § (see (0.1)) is closable.

Proof: By Theorem 1.5, there is p € A such that 7(p) = gQe and p(p) =h® f
are rank-one projections, where e € X, g € X*, f € Y and h € Y*. Then
m{p)e = g{e)e = e. Since D(T) is p-invariant, p(p)y = h{y)f belongs to D(T) for
y € D(T). Since D(T') is dense in Y, f € D(T).

Let 4o - 0in Y and Ty, — z in X. For each a € A, we have p(a)y, — 0. By
(0.1),

g(m(a)z)e = n(p)r(a)z = limn(pa)Ty, = limé(pa)yn + Lim T p(pa)yn
= lim Tp(p)p(a)y» = limh(p(a)y,)Tf = 0.

Hence g(n(a)z) = 0 for all a € A. Since = is irreducible, z = 0. |

2. Existence of implementations of bimodule-closable derivations

Let 7 and p be representations of an algebra 4 on Banach spaces X and Y and
let D = {n(a)+p(a) : @ € A} be the corresponding operator algebra on X+Y.
In this section we prove the following generalization of the Bratteli-Robinson
theorem (see [BR]).

THEOREM 2.0: Let 7 and p be irreducible representations of A and let X and Y
be reflexive Banach spaces. If the norm closure of the operator algebra D contains
a non-zero, compact operator, then any bimodule-closable (w, p)-derivation of A
is implemented by a closed, densely defined operator.

We will prove Theorem 2.0 in a few steps. First we require some auxiliary
results.

LEMMA 2.1: Let é be a (m, p)-derivation of A.
(i) If a closable operator F' implements §, then F € Imp(9).
(i) If Imp(d) # @, then § is bimodule-closable.

Proof: Let x, € D(F), z, — x € D(F) and Fz, — Fz. For a € A4,

pla)z, = p(a)r and Fpla)z, = §(a)z, + w(a)Fz, — §(a)z + n{a)Fz.
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Hence p(a)x € D(F) and 6(a)z = Fp(a)x — 7(a)Fz. Thus F € Imp(8) and (i) is
proved.
Let R € Imp(é), n(an) — 0, p(a,) — 0 and é(a,) - B. For y € D(R), we
have
By =limé(an)y = lim(Rp(an)y — m(an)Ry) = lim Rp(as)y.

Since R is closed, By = 0. Thus B = 0, so that ¢ is bimodule-closable. |

LEMMA 2.2: Let ¢ be a (m, p)-derivation of A, let J be an ideal of A, and suppose
that Imp(8].J) # 0.
(i) If p is irreducible and J is not contained in Ker(p), then Imp(d) # 0.
(ii) If m, p are irreducible and J is not contained in Ker(n) N Ker(p), then
Tmp(d) # 0.

Proof: T T € Imp(6]J), then p(J)D(T) C D(T). By Lemma 1.4, p|J is irre-

ducible, so that p(J)D(T) is dense in Y. By (0.1), for each @ € A, b € J, we

have

0(a)p(b)x = d(ab)x — m(a)b(b)x = n(ab)Tx — Tp(ab)x — w(a)[x(b)Tx — Tp(b)x]
= (Tp(a) — m(a)T)p(b)x

whenever € D(T). Hence T" = T|p(J)D(T) is a densely defined closable

operator which implements §. By Lemma 2.1(i), 77 € Imp(é).

Taking (i) into account, we may suppose that J C Ker(p). Then §(b)y =
7(b)Ty for each y € D(T) and b € J. The subspace

G = {z+y € X+Y : §(b)y = w(b)x for b € J}

is closed in X+Y and contains the graph {Ty+y:y € D(T)} of T. If 240 € G,
then w(b)xr = 0 for b € J. Since Ker(w) does not contain J, it follows from
Lemma 1.4 that «(J) is transitive. Hence 2 = 0, so that G is a graph of a closed
operator S: G = {y+Sy : y € D(S)} and §(b)y = 7(b)Sy for y € D(S) and
beJ.

The subspace D(S) is p-invariant. Indeed, for a € A, b € J and y € D(S),

5(b)(p(a)y) = d(ba)y — w(b)d(a)y = 7 (b)(m(a)y — d(a)y).
Therefore
7(b)(Sp(a)y) = 6(b)(p(a)y) = (d(ba)y — 7(b)d(a)y) = w(b)(x(a)Sy — 6(a)y).

Since 7(J) is transitive, §(a)y = n(a)Sy — Sp(a)y. Thus S € Imp(é). |
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Clearly, if 4 is a bimodule-closable (7, p)-derivation, then
(2.1) Ker(r) N Ker(p) C Ker(d).

The following result represents the first step in the proof of Theorem 2.0, and also
shows that, for coherent JF-representations m, p, each (m, p)-derivation satisfying
(2.1) is bimodule-closable.

THEOREM 2.3: Let w,p be coherent F-representations, and let § be a (m,p)-
derivation such that Ker(n) N Ker(p) C Ker(d). Then Imp(8) # 0.

Proof: By replacing A by A/(Ker(r) N Ker(p)), we may suppose that
Ker(m)NKer(p) = {0}. By Theorem 1.5, there exists p € A such that 7(p) = g@e
and p(p) = h® f are rank-one projections: g(e) = f(h) = 1. Since p? — p belongs
to Ker(m) N Ker(p), p is a projection.

Set C = pAp. The representations 7(C) and p(C) are one-dimensional. Hence
dim(C) < 2, since Ker(r) N Ker(p) = 0. If dim(C) = 1, then C = Cp. As in
the proof of Theorem 8 in [BR], setting T = d(p), dr(a) = Tp(a) — m(a)T" and
A = § — b7, we obtain that A is a (m, p)-derivation and A(p) = 0. Therefore
A(C) =0.

Now suppose that dim(C) = 2. Then C = Cp + Cq, where 7(q) = 0 and
p(p—q) = 0. Setting T = §(p) and A’ = § — §r as above, we have A'(p) = 0.
Now set § = A’(q) and A = A’ — 5. Since pg = qp = g, we have

Al(q) = A'(pg) = n(p)A’(g) and A'(q) = A'(gp) = A'(g)p(p)-
Therefore, taking into account the fact that p(q) = p(p), we obtain

A(p) = A'(p) — (A'(g)p(p) — m(p)A'(q)) =0,

A(q) = A'(q) — (A'(g)p(q) — 7(g)A'(q)) = A'(q) — A'(q)p(p) = 0.

Thus A(C) = 0.

The condition that A(pap) = 0 for a € A gives n(p)A(a)p(p) = 0. Making
use of (1.1) and (1.2), we have g(A(a)f) = 0. Applying this in the case where
a = cb, we obtain

g(r(QAG)) + 9(A()pB)f) =0 for bee A,

If p(b)f = 0, for some b in A, then g{m(c)A(b)f) = 0, for all ¢ € A, and hence
A(b)f = 0, since m(A) is transitive. This allows us to define a linear operator
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F: F(p(b)f) = A(b)f on the subspace L = p(A)f, which is dense in Y. The
operator F' implements A:

Aa)(p(b)f) = A(ab)f — 7(a)A(D)f = (Fp(a) — 7(a)F)(p(b)f)-

By Lemma 1.8, F is closable, so F € Imp(A), which implies that Tmp(§) # §.
1

Let m, p be F-representations, d be a (w, p)-derivation, and let T € Imp(d).
Then D(T) is p-invariant and D(T*) is w*-invariant. By Lemma 1.3, E, C D(T')
and E* C D(T*). Clearly, T|E, € Imp(6) and, in the case where both X and ¥
are reflexive,

T|E, C T C(T*|E;)".

LEMMA 2.4: If X\ Y are reflexive, then (T*|E2)* € Imp(4).

Proof: Let A€ B(X), Be€ B(Y) and C € B(Y, X) be such that
BD(T)C D(T) and AT +TBCC.
A standard argument shows that
(2.2) A*'D(T*YC D(T*) and T*A*+ B*T* CC*.
Applying this to the inclusion Tp(a) — 7{a)T C §(a), we obtain
®(a)*D(T*) C D(T*) and p(a)*T* —T*n(a)* C 8(a)* for each a € A.

Taking into account the fact that E} is m*-invariant and contained in D(T*),
denote T*|E* by S. Then p(a)*S — Sw(a)* C d(a)* and, since X,Y are reflexive,
S*p(a) — w(a)S* C §(a). This means that S* € Imp(4). |

THEOREM 2.5: Let m and p be irreducible representations of A, and let § be a
bimodule-closable (r, p)-derivation.
(i) If Ker(w) = Ker{p) and 7 or p is an F-representation, then Imp(8) # 0.
(ii) If Ker(m) is not contained in Ker(p) and p is an F-representation, then
Imp(4d) # 0.
(iii) Suppose that X and Y are reflexive. If Ker(p) is not contained in Ker(r)
and m is an F-representation, then Imp(d) # .

Proof: By Remark 1.6 and Lemma 1.7, both 7 and p in (i) are coherent F-
representations. Hence (i) follows from Theorem 2.3.
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Suppose that J = Ker(n) is not contained in Ker(p). Denote by p’,é" the
restrictions of p,d to J. By Lemma 2.2, in order to prove (ii) we need to show
that Imp(d’) # @. It follows from Lemma 1.4 that p’ is an F-representation.
Since § is bimodule-closable,

Ker(p') = Ker(r) N Ker(p) C Ker(&').

Replacing J by J/ Ker(p'), we may suppose that p is faithful.
Let p € J be such that p'(p) = h ® f is a rank-one projection. If p'(b)f = 0
for some b € J, then p/(bp) = 0. Hence bp = 0, so that

§'(b)f =0'(b)p'(p)f = 6'(bp) = 0.

As in Theorem 2.3, this allows us to define a linear operator F: F(o'(b)f) = ¢'(b) f
on the subspace L = p'(J)f which is dense in Y such that F implements §'.

To show that F is closable, assume that p'(b,)f — 0 and &'(b,)f — z. Then
P (bnp) = 0 and &' (b,p) = §'(bn)p'(p) = h ® x. Since &' is bimodule-closable,
h®x =0, so that z = 0. Part (ii) is proved.

Set J = Ker(p), and let §’, 7’ be the restrictions of §, 7 to J. By Lemma 1.4,
7’ is an F-representation. Since & is bimodule-closable,

Ker(n') = Ker(r) N Ker(p) C Ker(d').
Replacing J by J/ Ker(n'), we assume that 7' is faithful. We have
§'(be) = ' (b)d'(c) for b,c € J.

Let p € J be such that n(p) = g ® e is a rank-one projection. As in (ii), the
operator S: #'(b)*g — &§'(b)*g from D = n'(J)*g C X* into Y™* is well defined
and closable. For each a € A, we have

5(a)"(x'(8)°g) = [6(ba) — 6(B)p(a)]"g
= S'(ba)*g - pla)*S'(8)"g = [Sm(a)" - pla)"S)(x'(8)"9)-

Hence S7(a)* — p(a)*S C §(a)*. Set T = —S*. Taking into account the fact that
X and Y are reflexive, we obtain from (2.2) that T € Imp(d). ]

COROLLARY 2.6: Let 7 and p be representations of A on reflexive Banach spaces
X and Y, respectively.
(i) IfKer(m)NKer(p) # I.N1, (see (1.3)), then Imp(8) # O for each bimodule-
closable (m, p)-derivation é.
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(ii) If # and p are F-representations, then Imp(é) # @ for each bimodule-
closable (w, p)-derivation d.

Proof: Let a € I, N1, and a ¢ Ker(m) N Ker(p). If both operators 7(a) and
p(a) are non-zero, then m and p are coherent F-representations and (i) follows
from Theorem 2.3. If w(a) # 0 and p(a) = 0, then 7 is an F-representation and
Ker(p) is not contained in Ker(7), so that (i) follows from Theorem 2.5(iii}. In
the remaining case, (i) follows from Theorem 2.5(ii).

Similarly, part (ii) follows from Theorem 2.5. |

Remark 2.7: The proof of Theorem 2.5(iii) was based on the reduction to the
case p = 0. The example below shows that, if the spaces X, Y are not reflexive,
then, for some F-representations , (m, 0)-derivations need not be implemented.

Let Y = X, A = F(X), and n(A) = A for A € A. Let T be a bounded
operator on the second dual space X** such that TX is not contained in X.
Set 0(A) = A™T|X for A € A. Since A** maps X** into X, §(4) € B(X).
Clearly, d is a bimodule-closable (7, 0)-derivation. Since A has no invariant linear
subspaces, a closed operator S implementing § would be everywhere defined and,
hence, bounded. It follows that S = T, which is impossible.

The proof of the following result is standard; we inclade it for the reader’s
convenience.

PROPOSITION 2.8: Let A be a closed, unital subalgebra of B(X), let ¢ be a
bounded isomorphism from A into B(X), and let Sp(A) = Sp(p(A)) for A € A.
If P is a projection in the norm-closure of ¢(.A), then, for any e > 0, there is a
projection Q. in ¢(A) such that ||P — Q.|| < e.

Proof: Let U and V be disjoint closed disks centered at 0 and 1, respectively, and
let L be the boundary of V. Then Sp(P) C U U V. Since the spectrum function
B — Sp(B) is upper semicontinuous (see Theorem 3.4.2 in [A]), there exists
4 > 0 such that, for each B € B(X), ||B — P|} < é implies that Sp(B) CU U V.
Let R(B,A) = (B - Al)~! and C = maxyey |R(P,N)|. If |P - B|| < C71,
then
B-M=[1-(P—-B)R(P,A)(P-M) foreach A€ L,

so that

C

1R N = RPN S - BRENT] < (g

n=0
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Therefore
c?|p - B
P, X) - R(B,))|| = PA(B-P)R(BMN|| < —/r-—.
IR(P.Y) = R(B. V|| = |R(PX)(B - YRGB € { =gy
For each B € B(X), consider the Riesz projection

Q(B) = _%i‘ | R(B.)ix

(see 1.2.3 in [GK]). We have Q(P) = P and, by the above,
1P~ Q)] = 1Q(P) - QB < o= § IR(P. N = RB. N,
L

if |P - BJ| — 0.

Let B = ¢(A) for A € A. Then Sp(A4) = Sp(B) C U UV and its boundary
0Sp(A) Cc UUV. Let Sp4(A) be the spectrum of 4 in A. Since A is a closed
subalgebra of B(X), we have 8 Sp 4(A4) C 3Sp(A) (see Theorem 3.2.13(ii) in [A]).
Taking this into account, we obtain Sp 4(4) C UU V. Hence R(A4,)\) € A, for
each A € L, so that R(B, ) = ¢(R(A, \)).

Since A is closed,

QA) = —2im, | RN € A

Since Q(A) is the limit of the Riemann sums and ¢ is bounded,
1
23 QB) = Q) = ~5 § ARAND = o(QU). 8

Definition 2.9: A (m, p)-derivation § of A is called bimodule-closed if
(i) Ker(m)NKer(p) C Ker(s);
(ii) w(a,) = A, p(an) — B and é(a,) — C imply that there is ¢ € A such that
w(a) = A, p(a) = B, é(a) = C.

If § is bimodule-closed, it is, clearly, bimodule-closable.

THEOREM 2.10: Let w and p be irreducible representations of an algebra A with
identity on X and Y, and let § be a bimodule-closed (, p)-derivation of A. If
the norm-closure of the operator algebra D = {r(a)+p(a) : a € A} in B(X+Y)
contains a non-zero compact operator, then Ker(m)NKer(p) # I, N1, (see (1.3)),
so that at least one of the representations m and p is an F-representation.

Proof: Since § is bimodule-closed and 1 € A, the operator algebra

o= (o= (" 1) .0eu)
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on Z = X+Y is closed in B(Z) and 1z € B. The isomorphism ¢: 4 —
(w(a) 0 ) from B onto D is bounded and Sp(a) = Sp(p(a)).

0 pla)
Let K
-0
5=(5 7)
be a compact operator in D with K # 0. For each a € A,

B(a) = Bp(a) = <I‘ ’6(") Tp(;a)) eD.
Since 7(A) is transitive on X, it follows from Lemma 8.22 in [RR] that thereisa €
A such that 1 € Sp(A'n(a)). Then B(a) is compact and 1 € Sp(B(a)). Let P # 0
be the finite-rank projection on the spectral subspace of B(a) corresponding to
the eigenvalue 1. Since D is closed in B(Z), P belongs to D.
By Proposition 2.8, there is a € A such that

p(a) = (ﬁ%a) p?a)>

is a projection and ||P — ¢(a)]| < 3. Hence 0 # ¢(a) is a finite-rank projection,
so that m(a) and p(a) are finite-rank projections, and at least one of them is
non-zero. Thus a € Ker(w) NKer(p) and a € I, N I,. |

Let 0 be a (m, p)-derivation of A, and set Z = X+Y. Denote by A the
closed operator subalgebra of B(Z) generated by 1z and by all the operators

(nga) iEZD where a € A. Let @ be the projection on Y along X. Then
7(A) := A|X and p(A) := QA|Y are representations of Aon X and Y, respec-

tively, and 6(A) := (17 — Q)A|Y is a (#, p)-derivation of A. In a standard way,
one proves the following result.

LEMMA 2.11: If 7 and p are irreducible and é is bimodule-closable, then the
derivation & is bimodule-closed and Imp(8) = Imp(J). ]

Finally, we shall conclude the proof of Theorem 2.0.

Proof of Theorem 2.0: The closure of the algebra {7(a)+p(a) : a € A} coincides
with the closure of the algebra {#(A)+p(A) : A € A}, and therefore contains

a non-zero compact operator. Since ¢ is bimodule-closed, it follows from Corol-

lary 2.6(1) and Theorem 2.10 that Imp(é) # @. Applying now Lemma 2.11, we
complete the proof. 1

We denote by K(X) the ideal of all compact operators on X.
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Definition 2.12: An irreducible representation is called a K-representation if
its image contains a non-zero compact operator.

COROLLARY 2.13: Let & and p be K-representations of A on X and Y.

(i) If A has identity and § is a bimodule-closed (w, p)-derivation of A, then
Ker(m) N Ker(p) # I, NI, (see (1.3)), so that at least one of the represen-
tations m and p is an F-representation.

(ii) If X and Y are reflexive, then each bimodule-closable (, p)-derivation of
A is implemented by a closed operator.

Proof: By Theorems 2.0 and 2.10, we need only show that there exists ¢ € A
such that 7 (c)+p(c) is a non-zero compact operator. Let 7 (a) and p(b) be non-
zero compact operators. If p(a) = 0 and 7 (b) = 0, then set c = a+b. If p(a) # 0
(the case m(b) # 0 is similar), then there exists d € .4 such that p(a)p(d)p(b) # 0.
In this case set ¢ = adb. |

PROBLEM 2.14: Does the conclusion of Theorem 2.0 hold if we weaken the condi-
tion that the closure of the algebra {n(a)+p(a) : a € A} contains a non-zero com-

pact operator, and only assume that 7(A)NK(X) # {0} and p(A)NK(Y) # {0}7

The next corollary extends the result of Proposition 3.4.9 in [S] (see also
Theorem 3 in [BR]) to derivations of Banach algebras.

COROLLARY 2.15: Let 6 be a bimodule-closed (n, m)-derivation of an algebra A

with identity and P be a projection in w(.A). For any ¢ > 0, there is a. € A such
that w(a.) is a projection and ||P — w(a.)|| < e.

Proof:  Without loss of generality, we may suppose that Ker(r) = {0}. Since §

s=fa= (7 1) o)

is a closed subalgebra of B(X+X) and 1 € B. The map ¢: @ —

is bimodule-closed,

2
“2

' o)

is a bounded isomorphism from B into B(X+X) and Sp(a) = Sp(p(a)).
The projection
= P o
P= (5 )

belongs to ¢(B). By Proposition 2.8, for each ¢ > 0, there exists a. € A such
that ¢(a.) is a projection and ||P — ¢(a.)]| < . Hence n(a.) is a projection and
|IP —m(ae)| < e. ]
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3. Structure of Imp(4)

It is natural to begin the study of Imp(é) with the case when 6 = 0. This
case is the simplest one but, on the other hand, fundamental because, for any
T,S € Imp(d) with D(T) N D(S) # {0}, their difference implements § = 0 (in
general, however, T' — S is not defined).

A linear operator T from Y into X intertwines representations 7 and p of A
on X and Y respectively, if its domain D(T) is p-invariant and

m(a)Ty = Tp(a)y for y € D(T).
If = and p are irreducible and T # 0, then
(3.1) Ker(T') =0, D(T)isdenseinY and TD(T) is dense in X.

The set of all closed intertwining operators is denoted by Int(r, p). Thus Int(x, p)
= Imp(0).
We define the maps v: m(A) — p(A) and v": p(A) — 7w (A) by

Y(n(a)) = pla), if Ker(r) C Ker(p);

(3.2)
7' (p(a)) = m(a), if Ker(p) C Ker().

For finite-dimensional irreducible representations, the classic Schur’s lemma
states that Int(m,p) is trivial, whenever Ker(p) # Ker(r), and is a one-
dimensional space otherwise. For F-representations the situation is similar.

LEMMA 3.1:
(i) Let m and p be irreducible. If Ker(r) # Ker(p), then Int(w,p) = {0}.
Moreover, any operator intertwining p and 7 is zero.
(i) Let m and p be F-representations. If Ker(n) = Ker(p), then
(1) there exists 0 # T_ € Int(w,p) such that any T € Int(m,p) is an
extension of XT_ for some \ € C;
(2) the maps vy and «' are closable.

Proof: 1f 0 # T intertwines 7 and p, then 7(a)TD(T) = {0} for a € Ker(p), and
Tp(b)D(T) = {0} for b € Ker(w). Taking (3.1) into account, we have Ker(n) =
Ker(p). This proves (i).

Suppose that Ker(r) = Ker(p). Then (see Remark 1.6) 7 and p are coherent,
so that, by Theorem 1.5, there exists p € A such that

m(p)=g©e, plp)=hef withg(e)=h(f)=1
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If, for some a € A, p(a)f = 0, then p(ap) = 0. Hence m(ap) = 0, and so
m(a)e = 0. This allows us to define a linear operator S on E, := p(A)f by
setting Sp(a)f = w(a)e for a € A. Obviously S intertwines = and p. By Lemma
1.8, S is closable; we denote its closure by T_.

Let 0 # R € Int(m, p). Then f € E, C D(R). We have to prove that the
restriction of R to E is proportional to S. By (1.1),

h®m(a)Rf = h® Rp(a)f = Rp(a)p(p) = r(a)n(p)R = R*g @ w(a)e

for a € A. Hence w(a)Rf = An(a)e for some 0 # XA € C. Therefore Rf = JAe.
From this it follows that R|E, = AS because

Rpla)f = m(a)Rf = Ar(a)e = ASp(a)e fora € A.
Thus part (ii) (1) is proved. Part (2) follows from (1) and (3.1). |

Our next result shows in particular (when 6 = 0) that, for reflexive XY, there
is also 7' € Int(r, p) such that any T € Int(, p) is proportional to a restriction
of T to D(T).

THEOREM 3.2: Let 7 and p be F-representations of A on reflexive Banach spaces
X andY, and let § be a bimodule-closable (w, p)-derivation.
(i) If Ker(p) # Ker(r), then there are operators Tyin and Tinax in Imp(8) such
that Tiin € T C Tiax for any T € Tmp(4).
(ii) If Ker(p) = Ker(m), then there are closable operators S, F' from E, into X
such that
(1) 0# F € Int(m, p) and S € Imp(4);
(2) for each A € C, the operators S + AF' are closable and the operators
Ry := S+ AF and Gy, := ((S + AF)*|E})* belong to Imp(§);
(3) for each T € Imp(6), there exists A € C such that Ry C T C G).

Proof: By Corollary 2.6, there exists K € Imp(d). By Lemma 1.3, E, C D(T)
for each T € Imp(d). The operator S := K|E, implements J, so, by Lemma 2.1,
S € Imp(d). Clearly, the operator R(T) = T|E, — S intertwines 7 and p.

If Ker(p) # Ker(r), it follows from Lemma 3.1 that R(T') = 0, so T extends S.
We have T* C S*. Since D(T*) is m*-invariant, it follows from Lemma 1.3 that
E* C D(T*). Hence (T*|E%)* = (S*|E})*. By Lemma 2.4, (T*|E})* € Imp(9).
Since T C (T*|E*)*, we have S C T C (S*|EX}*, and so, to finish the proof of
(i), it only remains to set Tyin = K’ and Tmax = ((K')*|E})*.

If Ker(p) = Ker(n), then, by Lemma 3.1, there exists 0 # T_ € Int(m, p).
Set F' = T_|E,. Then (1) is satisfied. The operators S + AF implement §é for
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A € C. Since, by Remark 1.6, 7 and p are coherent representations, it follows
from Lemmas 1.8 and 2.1 that 5 + AF are closable operators and Ry € Imp(d).
By Lemma 2.4, G, also belong to Imp(§).

We obtain from the above discussion and Lemma 3.1 that, for any T' € Imp(6),
there exists ¢t € C such that R(T') = T|E,— S = tF. Thus T|E, = R,|E,. Hence

BACTIE, CT C(T*[E7)" = ((T|E,)"|ER)" = (RY|ER)" = G,

as required. |
The examples below illustrate both possibilities.

Example 3.3: Let R and S be closed densely defined operators from Y into X
such that R C S. Consider the algebra

A= {A - <"(1)1 ’2122) € B(X1Y) :4,D(S) C D(R),

Arz|pesy = (SA2 — AIS)ID(S)}v

and set m{A) = Ay, p(A) = A, and §(A) = Ays. Then 7 and p are F-
representations of A4, and ¢ is a bimodule-closed (, p)-derivation. The algebra A
is reflexive, and the lattice of invariant subspaces of A consists of {0}, X, X+Y
and all L such that G(R) C L C G(S), where G(R) and G(S) are the graphs of
R and S. Hence R = Ty is the smallest implementation of § and § = T, is
its largest implementation. |

Example 3.4 [K]: Let R and T be densely defined, closed operators from Y into
X such that:

(1) D(R)N D(T) is dense in Y and D(R*) N D(T*) is dense in X*;

(2) Ker(T) = {0} and TY is dense in X.
Then, for each A € C, the operators R + AT and R* + AT* are closable. Set
Ry, = R+ )T and Sy = (R* 4+ AT*)*, and consider the operator algebra

A= {A = (“él ‘2122> € B(X+Y) :1)A:D(R) C D(R), A,D(T) C D(T);

2)AiT|pry = TAz2|p(ry; 3)A12lpry = (RAs — AlR)|D(R)}-

Set m(A) = Ay, p(A) = Ay and 6(A) = Ayz. Then 7 and p are F-representations
of A and ¢ is a bimodule-closed (7, p)-derivation. It was proved in Theorem 3.5
in [K] that: (1) all operators Ry and S, belong to Imp(d); and (2) an operator
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G € Imp($) if and only if D(G) is p-invariant and Ry € G C S) for some A € C.
|

We will prove now that, if 7 and p are K-representations (see Definition
2.12), then the structure of Imp(d) in many respects remains the same as for
F-representations.

THEOREM 3.5: Let w and p be K-representations of A on reflexive Banach spaces
X and Y, and let § be a bimodule-closable (m, p)-derivation. Suppose that

(3.3) Ker(m) = Ker(p) and the maps v, (see (3.2)) are closable.

Then there are S € Imp(8), F € Int(n, p), and D C X* such that
(i) Ry =S5+ AF € Imp(d) and Gy = ((S+AF)*|D)* € Imp(6) for each A € C;
(ii) for any T € Imp(8), there exists A € C such that Ry CT C G,.
Otherwise there are two possibilities:
(1) there is Tynin € Imp(d) such that Tpyy C T for any T € Imp(6);

(2) there is Tax € Imp(8) such that T C Trax for any T € Imp(6).

Proof: 1t follows from Lemma 2.11 that there exist a unital Banach algebra A
with representations 7 and p on X and Y and a bimodule-closed {#, §)-derivation
5 of A such that 7(A) C #(A), p(A) C p(A), and Imp(6) = Imp(s). We also
have Int(n, p) = Int(#, §). Moreover, (3.3) holds if and only if Ker(7) = Ker(p)
and the maps 7(7(ad)) = 5(a) and v/(5(a@)) = #(@) are closable for all & € A.
Thus, without loss of generality, we may suppose that § is bimodule-closed.

By Corollary 2.13, Imp(d) # 0 and Ker(n) N Ker(p) # Ir N I,, so that at least
one of m and p is an F-representation.

If (3.3) holds, then, by Lemma 1.7, both # and p are F-representations and
the proof follows from Theorem 3.2(ii).

Suppose now that (3.3) does not hold. If both 7 and p are F-representations,
it follows from Theorem 3.2(i) that Imp(d) satisfies both (1) and (2).

Suppose that p is an F-representation and 7 is not. Then Ker(#) = I;. Since

Ker(n) NKer(p) # I N I, = Ker(m) N I,,

there is @ € J such that 0 # p(a) is a finite-rank operator. Set J = Ker(7). By
Lemma 1.4, p' := p|J is an F-representation and E, = E,. It follows from (1.4)
that, for each 0 # y € E,,,

E,=Ey = p’(J)y = p(J)y.
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Let 0 # K € Imp(6). Then D(K) is p-invariant, so that, by Lemma 1.3(i), E,
is dense in Y and E, C D(K). Set R = K|E,. Then 6{a)|E, = Rp(a)|E, for
each a € J. Therefore, for each 0 # y € E,,, we have

5(b)(p(a)y) = 6(ba)y — m(b)é(a)y = (Rp(b) — m(b) R)(p(a)y),

for a € J, b € A. Since D(R) = E, = p(J)y is dense in Y, it follows that R
implements §. Hence, by Lemma 2.1(i), R € Imp(6).
For any T € Imp(d), D(T) is p-invariant, so that E, C D(T) and

d(a)|E, = Rp(a)|E, = Tp(a)|E, foreachace€ J

Hence (R — T)p(J)E, = {0}, so that T|E, = R. Setting Tpin = R, we have
Tiin € T for each T € Imp(4).

Similarly, one can show that, if = is an F-representation and p is not, then
there is Tinax € Imp(d) such that T C Tpnax for each T € Imp(6). ]

4. Implementing operators and invariant subspaces

In this section we investigate the structure of norm-closed operator algebras B on
Banach spaces X with only one non-trivial invariant subspace L C X. We impose
some compactness conditions on B without which even the class of transitive
operator algebras on X seems to be indescribable.

To clarify the situation, let us consider the case where dimX < oo. In this
case, for an appropriate basis in X, the algebra B either consists of all block-

C . . .
0 B 0 A (this is a simple special
case of Theorem 4.9 below). In both cases B contains the space €, of all matrices

matrices (A C) or of all block-matrices (A

0 0
It should be noted that €; has a simple, basis-independent description

(0 ¢ ) , and decomposes into the direct sum of €;, and the block-diagonal part.

¢, ={AeB(X): AL ={0},AX C L},

and it is isomorphic to B(X/L, L). In the general case, we aim to prove that B
has a non-zero intersection with €, which implies that BN € is transitive or
even weakly dense in €.

We consider now an arbitrary operator algebra B on X. Let L be a non-trivial
invariant subspace of B. Denote by ¢, the standard homomorphism from B into
B(X/L): ¢r(A)(z + L} = Az + L, and set

B|L={A|lL:Ae B}, ¢r(B)={prL(A): AeB).
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In what follows the terms “weakly closed” and “weakly dense” mean closed or
dense in the weak operator topology (WOT) on B(X).

LEMMA 4.1: Let B|L and ¢ (B) be transitive algebras, and suppose that at least
one of them contains a compact operator. If BN€y, # {0}, then BN €, is weakly
dense in €.

Proof: Set X = X/L. For T € €, define an operator T in B(X,L): T(z+L) =
Tx,forz € X. Then T — T is an isometric, WOT-bicontinuous map from €,
onto B(X,L). The image E of BN €y in B(X,L) is a left B|L- and a right
L (B)-module. Hence BV is a left mwm~ and a right Wwo -module. Since
the algebras B|L and ¢ (B) are transitive, and at least one of them contains
a compact operator, it follows from Theorem 8.23 in [RR] that either mﬂm =
B(L), or ¢r(B) “-B (X). Hence E“” contains a rank-one operator, say f ®,
where z € L, f € X* and, therefore, all rank-one operators (A|L)(f @z)pL(B) =
wr{B)*f ® Az, for A, B € B, belong to E™. Since the algebrastB|L and ¢, (B)
WO

are transitive, E¥” contains all rank-one operators. Thus B~ = B(X ,L), so
that BN €y, is weakly dense in €. 1

Assume now that the invariant subspace L has a closed complement M in
X. Let Q be the projection on M along L and consider the representations
m: A— A|L and p: A - QA|M of Bon L and M. Then §: A — (1 - Q)A|M is
a (m, p)-derivation of B.

We denote by L£(8) the set of all invariant subspaces of B apart from {0}, L
and X. Let F be an operator from M into L with domain D(F) C M. Its graph
G(F)={(Fy,y): y € D(F)} is a subspace in X; it is closed if and only if F' is
closed.

LEMMA 4.2: If 7 and p are irreducible representations, then F < G(F) is a
bijection of Imp(d) onto L(4).

Proof: By (0.1), G(F) € L(8) if F € Imp(d). Let K € L£(4). Since 7 is
irreducible, either L C K, or LN K = {0}. Since p is irreducible, in the first case
K = X and in the second case there is a closed, densely defined operator F' from
M into L such that K = G(F). Since G(F) is invariant for all operators from B,
F implements 9. |

Note that under the isomorphism between M and X/L the algebra By =
p(B) = {QA|M : A € B} corresponds to ¢r,(B).
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THEOREM 4.3: Let B be a norm-closed algebra of operators on a reflexive Banach
space X . Suppose that B has only one non-trivial invariant subspace L and that
L has a closed complement M in X. If
either

(i) the closure of the “block-diagonal part” {A(1 - Q)+ QAQ : A € B} of B

contains a non-zero compact operator,

or

(ii) the algebras B|L and By contain non-zero compact operators,
then BN €y, is weakly dense in €.

Proof: Since L is the only non-trivial invariant subspace of B, n and p are
irreducible. Assume that BN€y = {0}. Then ¢ is bimodule-closable. Since L and
M are reflexive, it follows from Theorem 2.0 and Corollary 2.13 that Imp(§) # 0.
By Lemma 4.2, £{§) # @, so that B has another non-trivial invariant subspace
apart from L. This contradiction shows that BN € # {0}.

By Theorem 2.10 and Corollary 2.13, at least one of the representations w and
p is an F-representation. Hence the weak density of BN €, in €;, follows from
Lemma 4.1. n

Recall that by K£(X) we denote the ideal of all compact operators on X. For
any subspace L in X, the space

L' ={heX*:hy)=0foralycL}

in X* is closed in o(X*, X)-topology. To study the case where L has no closed
complement in X and X is non-reflexive, we consider the following pivotal result.

PROPOSITION 4.4: Let B be a norm-closed subalgebra of B(X) with only one
non-trivial invariant subspace L, and suppose that BN K(X) # {0}.
(i) If BNK(X) does not lie in €, then there is a B*-invariant, closed subspace
£ # {0} in X* such that B contains all operators f © x, where f € £,
re€ L.
(ii) If or,(BNK(X)) # 0, then, in addition, £N L+ # {0}.

Proof: Since L is the only non-trivial invariant subspace of B, the algebras B|L
and ¢, (B) are transitive. Let us prove first that B contains a compact operator
T such that 1 € Sp(T). If K € BNK(X) and K|L # 0, then, since the algebra
B|L is transitive on L, it follows from [L] (see also [RR]) that there exists A € B
with 1 € Sp(K'A|L). The operator T :== K A is compact and 1 € Sp(T). Suppose
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that pr(K) # 0. Since ¢ (K) is compact and ¢ (B) is a transitive algebra on
X/L, we have similarly from [L] that there is A € B with

1 € Sp(prL(K)pL(A)) = Sp(wL(KA)) € Sp(KA).

Thus again it suffices to set T = K A.

Let P = Q(T) (see (2.3)) be the Riesz projection on the spectral subspace Z
of T corresponding to {1}. Then dim Z < oco. Since B is norm-closed, P € B.
Set Zr, = ZN L. Since PL C L, we have PL = Zy. The algebra PBP|Z has
no invariant subspaces apart from {0}, Zr, and Z. Indeed, since L is the only
non-trivial invariant closed subspace of B,

(1) if 0 # z € Z, then Bz is dense in L, so that PBPz = Zp;

(2) f0# 2 € Z and 2 ¢ Zp, then Bz is dense in X, so that PBPz = Z;
and the claim follows.

If Z;, = {0} or Z = Z, the algebra PBP|Z is transitive and, by the Burnside
Theorem, PBP|Z = B(Z). Hence it contains a rank-one operator g @ z. If
{0} # Z; # Z, the same conclusion follows from Theorem 4.3 applied to the
algebra PBP|Z.

Since the set {x € X : g ® z € B} is a closed B-invariant subspace of X, it
contains L. Similarly, the set £ = {f € X* : fQz € Bforallz € L} is a
non-zero, closed subspace of X*. This proves (i).

Assume now that pr (BN (X)) # 0. As above, there is a compact operator T'
in Bwith 1 € Sp{w (7)) C Sp(T). Since ¢y, is bounded, it follows from (2.3) that
e (Q(T)) = Q(pr(T)) # 0 is the Riesz projection onto the spectral subspace of
¢ (T) corresponding to {1}. Hence Z does not lie in L, so Zy, # Z.

Suppose that Z; = {0} and 0 # ¢g® 2z € PBP|Z. Then z € Z. Forx € L,
(g®2)x = g(x)z. Since 2z ¢ L and L is invariant for g ® z, we have g € L*. Thus
£n Lt # {0}

Let {0} # Z # Z. Applying Theorem 4.3 to PBP|Z, we obtain that there
are z € Z; and g € X* such that g®z € PBP|Z and g(z) = 0 for x € Z;. Since
g®z=(9®2)P =P*g® 2z, we have g = P*g. Since PL = 7, we have, for
yeL,

9(y) = P*g(y) = g(Py) = 0.
Thus ¢ € L, so that £N L+ # {0} 1

For each subspace 9t in X*, we denote by MK L the linear span of all rank-one
operators f @ z, f € M, x € L. It is evident that L+ ® L C €.
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THEOREM 4.5: Let B be a norm-closed subalgebra of B(X) which contains a
non-zero compact operator, and suppose that B has only one non-trivial invariant
subspace L.
(i) If the algebra B is either (1) weakly closed, or (2) ¢r(BNK(X)) #£ {0}, or
(3) X is reflexive, then
BN&y # {0}

(ii) If either (1) ¢r(B N K(X)) # {0} (in particular, if B C K(X)), or
(2) (BNK(X))|L # {0} and X is reflexive,
then BN €y, is weakly dense in €.
(ili) If B is weakly closed and BN K(X) does not lie in €, then € C B.

Proof: Part (i) follows from (ii) and (iii). Since L is the only non-trivial invariant
subspace of B, the algebras B|L and r,(B) are transitive. Suppose that BNK(X)
is not contained in €7,. Then at least one of the algebras B|L and ¢, (B) contains
a non-zero compact operator, and it follows from Proposition 4.4 that there is a
B*-invariant, norm closed subspace £ # {0} in X* such that £& L C B.

Let o1 (BN K(X)) # {0}. By Proposition 4.4(ii), £ Lt # {0}. Therefore
{0} # BN (LYt ® L) C BN €y, and part (ii) (1) follows from Lemma 4.1.

Let BN K(X) contain an operator K such that K|L # 0. If X is reflexive,
the only B*-invariant subspaces of X* are {0}, L1, and X*. Since £ # {0}, it is
either L or X*. Thus L* ® L C £® L C BN¢y and (ii) (2) follows from Lemma
4.1.

Let B be weakly closed and £¥ be the closure of £ in the o(X*, X)-topology.
Then £¥ ® L C B. The space £¥ is B*-invariant and, by the bipolar theorem,
there is a norm closed subspace M in X such that £% = M=. The space M is
B-invariant. Since £ # {0}, M is either {0} or L. In both cases L+ C £¥, so
L+ ® L C B. Applying Lemma 4.1, we complete the proof. |

The reflexivity of X in Theorem 4.5(i) (3) and (ii) (2) is essential as the
following example shows.

Example 4.6: Let H be a Hilbert space, X = B(H) and L = K(H) be the ideal
of all compact operators on H. Then X is the second dual of L. Let B(L) be
the algebra of all bounded operators on L. Set B = {4* : A € B(L)}.

Then L is B-invariant, A**|L = A for any A € B(L), and ||A**|| = ||A||. Hence
B is a norm-closed subalgebra of B(X) and

Bne¢p = {0}

If A€ B(L) is a rank-one operator, then A** is also a rank-one operator.
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Let us show that L is the only non-trivial invariant subspace of B. For B €
B(H), the operators Ag, up of left and right multiplication by B belong to B{X),
preserve L and A\g = (Ag|L)**, pp = (uB|L)**. Hence Ap,up € B and, by
Calkin’s Theorem, L is the only non-trivial invariant subspace of B.

Remark 4.7: The above construction can be considered for any non-reflexive
Banach space L: the algebra B = B{L)** on L** always contains non-zero com-
pact operators and BN €, = {0}. However, for some L, B has other non-trivial
invariant subspaces apart from L. An example of such a space is L = co+11.

We consider now the case when an operator algebra B consists of compact
operators only.

COROLLARY 4.8: Let B be an algebra of compact operators on X with only one
non-trivial invariant space L. Then:
(i) B! contains € ;
(ii) if, in addition, X /L is reflexive and L has the approximation property, then
¢ NK(X)CB.

Proof: Part (i) follows from Theorem 4.5(ii) (1).

By Proposition 4.4(ii), B contains £; ® L, where £, = £n L’ is a non-
zero closed B*-invariant subspace in LL. Since L is isomorphic to (X/L)*, it is
reflexive, so £1 is closed in the o(X*, X)-topology. By the bipolar theorem, there
is a closed B-invariant subspace M in X such that £, = M. Since L is the only
non-trivial B-invariant subspace, £; = L+. Thus L+ ® L = ¢, N F(X) C B.

Under the isomorphism of €, and B(X/L, L), €, NF(X) and €, NK(X) corre-
spond to F(X/L,L) and K(X/L, L), respectively. It follows from Grothendieck’s
theorem that the approximation property of L implies the density of (Y, L) in
K(Y, L), for any Banach space Y. Therefore, since B is norm-closed, €, NK(X) C
B. 1

For the case where X = H is a Hilbert space, Corollary 4.8(ii) allows us to
obtain a description of norm-closed operator algebras of compact operators with
only one non-trivial invariant subspace. We shall use the symbol L+ for the
orthogonal complement of L in H.

THEOREM 4.9: If a norm-closed algebra B of compact operators on a Hilbert
space H has only one non-trivial invariant subspace L, then

B=2+ (¢, NK(H)),
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where the algebra ® consists of compact operators of the form A = (%1 12 )
2

with respect to the decomposition H = L & L+ and
either
(i) D is isomorphic to K(L) & K(L1);
or
(ii) there exists a closed, densely defined, injective operator T from Lt into L
such that Im(T') is dense in L,

A D(TYC D(T) and A T=TA, forAc®D.
Proof: Clearly, in the block-matrix form €y, coincides with the set of all upper
triangular matrices <8 g) By Corollary 4.8(ii}, B contains the set 91 =

€, NK(H) of all compact operators in €. Hence B = D + N, where D is a norm
closed algebra which consists of block-diagonal operators.

Let @ be the projection on L+ and consider the representations m: A — A|L
and p: A — QA|L* of Bon L and L. Then 7n(B) = 7(D) C K(L), p(B) =
p(®) C K(LY).

Suppose that J, = Ker(p|D) # {0}. Since 7(D) is transitive on L, n(J,) is a
transitive, norm-closed subalgebra of IC(L). Hence w(.J,) = K(L) and it follows
that D is isomorphic to (L) (L+). The same is true if J, = Ker(n|D) # {0}.

Suppose now that J, = J, = 0. Since D is a closed algebra of compact
operators, 7|® and p|D are F-representations of ® and part (ii) follows from
Lemma 3.1(ii). |
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